CR12MOV锻件简介特性
合金工具钢:CMoV 标准:GB/T 1299-1985
CMoV模具钢有高淬透性,截面为 300 ~ 40 0㎜ 以下者可以完全淬透,在 300 ~ 40 0℃时仍可保持良好硬度和耐磨性,韧性较C 钢高,淬火时体积变化最小。可用来制造断面较大、形状复杂、经受较大冲击负荷的各种模具和工具。例如,形状复杂的冲孔凹模、复杂模具上的镶块、钢板深拉深模、拉丝模、螺纹挫丝板、冷挤压模、冷切剪刀、圆锯、标准刀具等。
适用范围
冷作模具钢,钢的淬透性、淬火回火的硬度、耐磨性、强度均比C高。用于制造截面较大、形状复杂、工作条件繁重下的各种冷冲模具和工具,如冲孔凹模、切边模、滚边模、钢板 深拉伸模、圆锯、标准工具和量规、螺纹滚模等。
物理性能 CMoV是国标的说法,德标叫做:X165CrMoV12
化学成份:
化学成分
元素 | C | Si | Mn | Cr | P | S | Mo | V |
含量 | 1.45~1.70
| ≤0.40
| ≤0.40
| 11.50~13.00
| ≤0.030
| ≤0.030[1]
| 0.40~0.60
| 0.15~0.30
|
回火 CMoV钢推荐的回火规范 方案 | 淬火温度 /℃ | 回 火 |
用 途 | 加热温度/℃ | 介质 | 硬度HRC |
Ⅰ Ⅱ Ⅲ | 1020~1040 | 消除应力 去除应力,降低硬度 去除应力,降低硬度 | 150~170 200~275 400~425 | 油或硝盐 — — | 61~63 57~59 55~57 |
Ⅳ Ⅴ Ⅵ | 1115~1130 | 去除应力及形成二次硬化 去除应力及形成二次硬化 去除应力及形成二次硬化 | 510~520℃多次回火 -78℃冷处理 加510~520℃一次回火 -78℃冷处理加一次510~520℃回火,再-78℃冷处理 | — — — | 60~61 60~61 61~6 |
淬火 方案 | 第一次预热/℃ | 第二次预热/℃ | 淬火温度/℃ | 冷 却 | 硬度 (HRC) | | | |
介质 | 介质温度/℃ | 在介质中冷却 | 随后 | | | | | |
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ | 550~660 | 840~860 | 950~1000 1020~1040 1020~1040 1115~1130 1115~1130 | 油 油 熔融硝盐 油 熔融硝盐 | 20~60 20~60 400~550 20~60 400~450 | 至室温 至油温 5~10min 至油温 5~10min | 空冷 空冷 空冷 空冷 空冷 | 58~62 62~63 62~63 42~50 42~50 |
注:1.方案Ⅱ、Ⅲ用于要求获得很高的力学性能及变形较小的工件,如螺纹滚子、搓丝板、形状复杂受冲击负荷的模具等; 2.方案Ⅳ、Ⅴ用于要求获得红硬性及耐磨性的工件,但力学性能较差,尺寸变形较大,如450℃以下工作的热冲模等; 3.这种钢对脱碳很敏感,预热和加热用的盐浴必须经过充分的脱氧后再使用;若在普通电炉中加热可将工件装入箱 内,填充以渗碳剂或生铁粉(这时工件可能有少许增碳现象,硬度可提高HRC1~2)。 表2-3-1 淬火状态的组织比例 淬火方案 | 冷却 | 碳化物/% | 马氏体/% | 奥氏体/% |
Ⅰ、Ⅱ | 油、硝盐 | 12 | 73~68 | 20~23 |
对应牌号
中国GB标准牌号:首特钢铁cmov、中国台湾cNS 标准牌号SKD11、德国DlN标准材料编号1.26o1、德国DIN标准牌号x165CrM0v12、 ⽇本Jis标准牌号sKD11、韩国Ks 标准牌号sTD11、意⼤利UN1标准牌号x165CrM0W12KU、瑞典SS标准牌号2310、西班⽛UNE 标准牌号X160CrM0V12、美国AISi/sAE标准牌号D3、俄罗斯roCT 标准牌号x12M。
加硬处理为提高模具寿命达到80万模次以上,可对预硬钢实施淬火加低温回火的加硬方式来实现。淬火时先在500-600℃预热2-4小时,然后在850-880℃保温一定时间(至少2小时),放入油中冷却至50-100℃出油空冷,淬火后硬度可达50-52HRC,为防止开裂应立即进行200℃低温回火处理,回火后,硬度可保持48HRC以上
盐浴渗钒处理Crl2MoV冷作模具钢的中性盐浴渗钒处理工艺,Crl2MoV钢经中性盐浴渗钒处理可获得碳化物渗层,一、碳钒化合物,该渗层组织均匀,具有良好的连续性和致密性,厚度均匀,结构致密,具有很高的显微硬度和较高的耐磨性,表面硬度、耐磨性及抗粘着性等性能大幅度提高。二、VC在奥氏体中的溶解度比它在铁索体中的溶解度高,随着温度的降低,VC从铁索体中析出,使合金强化及晶粒细化,化合物层表现出较高的硬度。 CMoV 属于高碳高铬莱氏体钢, 碳化物含量高,约占20 % ,且常呈带状或网状不均匀分布,偏析严重, 而常规热处理又很难改变碳化物偏析的状况, 严重影响了钢的力学性能与模具的使用寿命。而碳化物的形状、大小对钢的性能也有很大的影响, 尤其大块状尖角碳化物对钢基体的割裂作用比较大,往往成为疲劳断裂的策源地,为此必须对原材料轧制钢材进行改锻,充分击碎共晶碳化物,使之呈细小、均匀分布, 纤维组织围绕型腔或无定向分布, 从而改善钢材的横向力学性能。
锻造时对钢坯从不同方向进行多次镦粗和拉拔,并采用“二轻一重”法锻造,即坯料始锻时要轻击,防止断裂,在980~1 020 ℃中间温度可重击, 以保证击碎碳化物,
CMoV 钢未改锻,采用固溶双细化处理[5 ] ,即500 ℃及800 ℃左右二级预热,1 100~1 150 ℃固溶处理,淬入热油或等温淬火,750 ℃高温回火,机加工后960 ℃加热油冷后进行最终热处理, 也可使碳化物细化、棱角圆整化,晶粒细化。