供应发泡剂,发泡剂价格,发泡剂厂家直销
发泡剂又称起泡剂、泡沫剂。是能促进发生泡沫,形成闭孔或联孔结构的物质。根据物质的作用,有物理了泡剂和化学发泡剂二类。发泡剂可以是表面活性剂,如肥皂、洗涤剂,天然物质如蛋白质、植物胶,易挥发液体如乙醇、水,能发生惰性气体的物质如偶氮化合物、亚硝基化合物,难溶于水的气体如空气、氮、二氧化碳、氢等。用于泡沫灭火、制泡沫塑料、泡沫橡胶、海绵橡胶、泡沫混凝土、泡沫玻璃等。加工农药水分散粒剂、片剂时也需要发泡剂。起泡剂主要是指液体中的发泡剂,有时也指起沫剂,用于矿物浮选,如松油、酚类、醇类等。能使塑料、橡胶等聚合物形成泡孔结构的物质也称发泡剂。
发泡剂是使人造革形成泡孔结构而添加的配合剂;
发泡剂在特定的条外下产生大量气体,使人造革的塑料层形成许多连续的、互不相通的微细的泡孔结构。
添加发泡剂的目的是使人造革更富有弹性、手感柔软,更近似天然皮革的感觉,同时降低产品成本。
分类:物理发泡剂、化学发泡剂。
物理发泡剂:泡沫细孔是通过发泡剂的物理形态变化,即通过压缩空气的膨胀或液体的挥发等形成。如压缩空气、氯代脂肪烃(一氯甲烷、二氯甲烷、二氯乙烷)、以及醇、醚等。
化学发泡剂:泡沫细孔是通过发泡剂在受热时分解所放出的气体而形成的。可分为无机发泡剂和有机发泡剂。无机发泡剂主要有碳酸氢铵、碳酸氢钠、亚硝酸钠等。有机发泡剂主要有偶氮化合物、磺酰肼类化合物、亚硝基化合物等。目前人造革使用的是有机发泡剂,通常是偶氮二甲酰胺、偶氮二异丁腈。
在生产中使用AC发泡剂时,将发泡剂于常温下和树脂及其他配合剂用专用的搅拌机混合成糊状胶料,再用三辊研磨机研磨到一定细度。经过在涂布机上涂布、加热.开始凝胶,再继续加热,开始熔融,粘度也开始下降,当温度达到发泡剂的分解温度时,会急剧地放出大量气体,熔融的胶料膨胀,由于发泡剂在胶料中分散相当均匀。因此,形成微细均匀的泡孔结构,冷却后,泡孔结构保持下来。
发泡剂 - 发泡剂分类及相关应用
在塑料中加入一些填料,就可使塑料某些性能得到改进,由此更适合于某些专门用途。为了降低塑料的密度和硬度,或者增强它的隔热性或隔音性,则最理想的填料就是空隙。含有空隙或泡孔的塑料,分类为泡沫塑料。随着发泡的程度,也就是空隙造成的泡沫的体积份额的差异,泡沫塑料的性能与基础塑料可能有相当大的差别。发泡剂是一种化学品,可加到塑料中,在加工过程的适当时间,它即会放出气体,使塑料中形成泡孔。
发泡剂 - 塑料泡沫的形成一般可分为四个阶段
第一阶段,发泡剂必须完全均匀地分散在聚合物内,聚合物通常呈液体或熔融态。发泡剂此时在聚合物中可以形成真正的溶液,或者仅仅是均匀地分散在聚合物中,形成二相系统。第二阶段,大量单个的气泡形成后,该系统即转变成一个气体分散在液体中的系统了。此时往往要加入核化剂,以促进大量小气泡形成。核化剂一般是极细的惰性颗粒,它们为新气相的形成提供部位。
第三阶段,最初形成的泡孔在不断涨大,这是因为有更多的气体扩散并透过聚合物进入了泡孔。如果这段时间够长,则单个的泡孔就将互相接触。假如隔开单个泡孔的壁破裂,那么,通过这种聚结方式,就会形成更大些的泡孔。如果主要是通过泡孔互连而形成的泡沫,则称之为开孔式泡沫。如果是由互不相连的泡孔形成的泡沫,就叫闭孔式泡沫。如果允许泡孔聚结无限制地进行下去,那么泡沫就会塌陷,这是因为气体全部自动地与聚合物分离开了。
第四阶段,当聚合物粘度增加,泡孔不能再增长时,泡沫就会稳定住。采用冷却、交联或其它方法都可以增加聚合物粘度。发泡过程的后三个阶段,从时间来看,则可短至几分之一秒,最长也不会超过几秒钟。泡沫的形成,要求聚合物呈液态。为此,可通过加热溶解或塑化聚合物。泡沫塑料的生产过程几乎与任何普通塑料生产过程一样,通常经过挤塑、滚塑和注塑,以及增塑糊加工和热成型等过程。出于同样原因,基本上任何种类的塑料都能制成泡沫塑料。聚氯乙烯(硬质和软质都可)、聚苯乙烯、聚丙烯、ABS和聚乙烯,都已工业规模地制成泡沫塑料。耐热工程塑料和热固性聚合物也是如此。
上述泡沫塑料的最终市场极为广阔。结构泡沫塑料的模塑制品具有重量轻的特点,常用来做器具的罩壳。聚氯乙烯地板利用其泡沫可增加缓冲作用及装饰纹理。特低密度的泡沫塑料,广泛用于食品包装和服务行业,因为这些行业对于材料的保温性能很是看重。管道外包装保温也采用这类塑料,特低密度的泡沫塑料具有重量轻、缓冲性能好的特点,可作为优良的包装填料,而它的缓冲性能又适合制作各种衬垫、填料,例如人造革皮的衬垫。在注塑较厚的零部件时,采用小量的发泡剂常常可以防止制品上出现凹痕,低密度的闭孔泡沫塑料通常用来制造漂浮设备,而开孔泡沫塑料的吸液性能好,可被用于相应的用途。以上仅例举了泡沫塑料最常用的用途,这不过是用来说明泡沫塑料的应用是多么的广泛,以及采用发泡剂的原因所在。
发泡剂 - 发泡剂类型
根据发泡气体的来源,可将发泡剂主要分成以下两类:即物理发泡剂和化学发泡剂。仅从名称上就可得知,物理发泡剂产生气体是通过状态的物理变化——一般是从液态到气态;而化学发泡剂产生气体则是通过化学反应。后者是热敏性化学品,当加热时,发泡剂发生分解反应,产生气态和固态两种分解产物,上述两类发泡剂又可各自分成许多小类。
物理发泡剂从理论上讲,在加工过程中,任何能与聚合物混合,并随之能汽化的材料,都可用来作为发泡剂。但实际上,物理发泡剂最好是在适当的条件能液化,并在正常的塑料加工温度(或低于这一温度)下,能够汽化,使塑料发泡。这类发泡剂必须在适当条件下能溶于聚合物,但溶解度不能过大。发泡剂气体在聚合物内的渗透能力非常重要,每单位重量发泡剂所释放的出的气体的体积也同样重要。后者即称作发泡剂的效率,对于所有各种类型的发泡剂来说,这都是一种重要的检测指标,高效发泡剂标准为:每克至少释放150-200cc.气体(按标准状态计)
目前最常用的物理发泡剂是氯氟烃类、烃类和压缩气体(如氮气和CO2)。这类发泡剂的使用要求是:其温度和压力必须保证发泡剂以液态形式与塑料混合。当改变温度和/或压力时就可使发泡剂发生汽化,即开始发泡。例如,如果一种低沸点的烃类发泡剂被泵送至一台装有熔融塑料的挤塑机中,那么挤塑机内的高压就能使烃类发泡剂保持液态形式溶于聚合物中,当聚合物熔体出挤塑机时,骤然的压降即迫使发泡剂汽化,从而产生泡沫。简单气体,如氮气和CO2则需要比烃类或氯氟烃类高得多的压力,方能达到这一结果。核化剂可以促进形成均匀的泡孔结构。
为制成特低密度泡沫塑料(密度低至 10lb/cu.ft.左右)采用氯氟烃和烃类发泡剂效果极佳。其主要原因有两个。一是由于所需发泡剂之量极大(有时达到基质树脂重量的20%或更多),而这类发泡剂要比化学发泡剂便宜,这就补偿了设备上的较高费用;二是与泡沫稳定化的热力学相关。正如本文前面谈到的,要使一个泡沫稳定化,必须在出现塌陷之前就得改变聚合物熔体的粘度。使用最广泛的烃类和氯氟烃类发泡剂,实际上可以降低它们所用于的聚合物的熔体粘度。当它们发生汽化而脱离聚合物溶液时,熔体的粘度升高了,就可减少为稳定泡沫所需的冷却费用。对于特低密度的泡沫塑料来说,这一点尤其重要。
尽管发泡剂具有固有的优点,但使用起来并不是没有问题的。大部分这类发泡剂都会污染自然环境,而且正在继续严重化。特别是氯氟烃类。而烃类也有这一问题,仅是程度稍轻。
使用最广泛的氯氟烃类发泡剂,都是一些全卤代品种,通常叫作CFCS。CFC-11和CFC-12就是典型代表。近年来,人们已经确认,这类化学品的使用与大气上层臭氧层变薄有关。因此,通过法律约束与自愿行动的结合,这类发泡剂正迅速地被淘汰,目前它们正在被部分卤化的氯氟烃类(HCFCS)和氟烃类(HFCS)所代用。但是取代品最后是否能普遍使用,这一问题目前还不能肯定。其它与上述不同的取代途径目前也正在探讨之中。DOW公司最近宣称,他们开发了一种采用CO2制造特低密度聚苯乙烯泡沫塑料的新工艺。
另外一类常用的物理发泡剂,即烃类,相对来说对臭氧层没有什么影响。然而它们的使用也不是没有法规限制的。烃类的释放也和其它挥发性有机化合物(VOCS)一样,要受到法律的限制,因为它们的释放物会危害低层大气层,特别是生成了臭氧。法规的严厉性在各地区是有区别的,这要根据当地空气质量而定。此外还应考虑到烃的易燃性。在作任何采用烃类为发泡剂的工厂设计时,这一点应为重要考虑因素。最广泛用作发泡剂的烃类是丁烷和正戊烷。
化学发泡剂化学发泡剂也可以分成二个主要类型:有机化学品和无机化学品。有机化学发泡剂品种非常多,而无机化学发泡剂则种类有限。最早的化学发泡剂(大约在1850年)是简单的无机碳酸盐和碳酸氢盐。这类化学品加热后会放出CO2,它们最后被碳酸氢盐和柠檬酸的混配物取代了,因为后者的预后效果要好得多。当今更优秀的无机发泡剂,其化学机理基本与上述相同,是聚碳酸类(原文为Poly-carbonic acids)和碳酸盐类混用。聚碳酸的分解是吸热反应,在320°F 左右,每克酸可放出100cc.左右的CO2,进一步加热至390°F左右时,将会放出更多的气体。这一分解反应的吸热性质可能带来某种程度的好处,因为在发泡过程中散除热量是个大问题。除了作为发泡的气体来源,这类物质时常还用作物理发泡剂的核化剂。据信,这类化学发泡剂分解时形成的最初的泡孔,为随后物理发泡剂放出的气体提供了迁移的场所。
与无机发泡剂相反,可供选择的有机化学发泡剂品种繁多,物理形态也各自不同。过去一些年来曾评价过数百种可能用作发泡剂的有机化学品。用来评判的准则也很多。最重要的几条是:在可控制速度和可预计温度的条件下,所释放的气体不仅量大,而且再现性好;反应产生的气体和固体均为无毒者,而且对于发泡的聚合物不能有任何不良影响,例如,产生颜色或不良气味;最后,是成本问题,这也是相当重要的一条准则。当今工业上使用的那些发泡剂,是最符合上述这些准则的。
低温发泡剂从众多可选用的化学发泡剂中进行选择,主要应考虑的问题是:发泡剂的分解温度应与塑料的加工温度相适应。有两种有机化学发泡剂已为低温聚氯乙烯、低密度聚乙烯和某些环氧所广泛接受。第一种是甲苯磺酰肼(TSH)。这是一种乳黄色粉末,分解温度为240°F左右。每克约产生115cc氮气和一些水分。第二种是氧化双(苯磺酷)肋,或称OBSH。这种发泡剂或许在低温用途中使用更为普遍,这种材料为白色细粉状,其正常分解温度是320°F。如果采用活化剂,如尿素或三乙醇胺,则可将这一温度下降到265°F左右。每克可放出125cc气体,主要是氮气。OBSH分解后的固体产物是聚合物,如果它与TSH共同使用,则可减轻臭味。
高温发泡剂对于高温塑料来说,例如耐热ABS、硬聚氯乙烯类、一些低熔融指数的聚丙烯类和工程塑料,如聚碳酸酯和尼龙,采用较高分解温度的发泡剂比较合适。甲苯磺酞氨基崛(TSS或TSSC)是一种很细的白色粉末,分解温度约445°F,一克发气量为140cc,主要为氮气和CO2的混合物,并有少量CO和氨。这种发泡剂常用于聚丙烯和某些ABS。但由于其分解温度之故,所以它在聚碳酸酯的应用是有限的。
发泡剂 - 发泡剂的鉴别
发泡剂能够通过化学反应放气体,进而使塑料本体牛泡沫状结构的助剂(这里特指化学发泡剂)。翅料用的泡制人敛分为 r机发泡剂和无机发泡剂,日前常用前者。
由于发泡剂在最终 料制品中以分解残余物形式存在,因此没有现成的鉴别方法鉴别。根据作者多年的工作经验总结以下儿点鉴别方法:
(1)可通过测定助剂试液对水、酸、仃机试剂等的溶解性差异,同时以纯发泡剂试剂(已经过 佯晶处理环节相同的处理)作对照试验,加以鉴别。
(2)可利用红外吸收光谱及质谱等仪器分析法,以纯发泡剂试剂(已经过与样品处理环节相同的处理)作参比对照,加以鉴男别。
(3)通过对助剂试液的常数测定进行鉴别。