德国FAG轴承历史起源
德国FAG集团成立于1883 年,是全球家轴承制造商。自2001年起,FAG成为德国舍弗勒集团的一部分,并在集团的航天、汽车和工业领域起到了积极和重要的作用。与INA产品相结合,FAG在滚动轴承行业拥有同行业最齐全的产品大纲。涵盖了生产机械、动力传输与铁路、重工业以及消费品行业中所有的应用范畴。
舍弗勒集团是全球范围内生产滚动轴承和直线运动产品的领导企业,也是汽车制造业中极富声誉的供货商之一。集团在全球大约有65,000名员工,在超过50个国家有超过180个分支机构,2009年销售额约为73亿欧元。这使舍弗勒集团成为德国和欧洲最大的家族企业集团之一。舍弗勒集团旗下拥有三大品牌:INA,LuK和FAG,为汽车、工业和航空航天领域提供高质量的轴承和零部件产品。
FAG轴承主要应用领域:航空工程、金属切削机床、钢铁加工设备、转炉、铸造设备、轧机、机械传动设备、造纸机械、水泥机械、磨机、矿山机械、工程机械及振动机械、环保设备、风力发电设备、船舶、天线及雷达、纺织机械、包装机械等。
编辑本段德国FAG轴承的历史
是世界上家滚动轴承生产厂,滚动轴承工业的先驱。
Friedrich Fischer(1849-1899) 公司的创始人同时又是精密钢球的现代化生产工艺的发明者. 他的具有革命意义的发明是全球滚动轴承工业历史开端。
德国FAG轴承起源
FAG品牌同样是起源于一个天才的灵感。早在1883年,在德国的施威因福特小城,Friedrich Fischer设计了一种专用钢球磨床,次使得利用研磨工艺生产出完全球体的钢球成为可能。该发明被认为是滚动轴承工业的奠基石。这也是为什么FAG已成为在机械制造业、汽车工业和航空航天技术中的领导品牌之一。在世界主要工业国家,都有FAG的公司、分支机构和销售代理。
FAG轴承生产外径从3毫米到4.25米的各类球轴承和滚子轴承,包括依据样本的标准产品和依据用户特殊要求的非标产品。FAG轴承与INA轴承共同为客户提供一系列全面和完善的服务及技术支持,包括:轴承和轴承系统的检测、维护和装拆。
作为一个有前瞻性的企业,FAG轴承在研发方面也投入了大量的资金。现代化的模拟仿真技术、测试设备和特殊材料实验室为各个生产线的持续发展和改进提供了可靠的支持,同时也为保持FAG轴承强大的创新能力提供了保障。
编辑本段FAG轴承分类:
FAG深沟球轴承:
FAG深沟球轴承
FAG深沟球轴承是带有实心外圈、内圈及球和保持架组件的万用、自留轴承。这些产品设计简单,使用寿命长并且易于维护;可分为单列及双列设计和开口和密封设计。由于所使用的生产技术,开口轴承仍可以转入外圈上的凹陷处以密封或保护。由于是低摩擦扭距,它们适用于高速度。
FAG角接触球轴承:
单列角接触球轴承是带实体内圈和外圈,以及球和尼龙、钢板或黄铜保持架组件组成的自保持单元。内圈和外圈滚道在轴承的轴向相互偏移。有开式和密封轴承。它们的自调心能力很小。很多尺寸的角接触球轴承的都是X-life设计的。这些轴承在尺寸表中都有显示。X-life品质的轴承具有改进了的滚道形状和经过优化的表面。这使轴承的疲劳极限载荷得到了显著的提升。在修正使用寿命计算中,寿命值提升了50%以上。因此,在特定的应用中,必要时可以使用更小的轴承。 双列角接触球轴承是由实体的内外圈,和球及由聚酰胺,冲压钢片,或黄铜制成的保持架组成的单元。它们在结构上与一对O形布置的单列角接触球轴承相似,但结构更紧凑。它们有不同大小的接触角和轴承圈的设计。 轴承可以是开式的和密封的。由于所用生产技术,开式轴承外圈上有用于密封或防尘盖的切削槽。密封轴承无需维修,特别适用于经济的轴承应用。角接触球轴承的自调心范围很小。
FAG圆柱滚子轴承:
FAG单列圆柱滚子轴承
带保持架的单列圆柱滚子轴承是一种包括有整体内外圈,圆柱滚子及保持架组件的一套组合件.外圈在两边有刚性挡边或者没有挡边,内圈有一到两个刚性挡边,或者没有设计挡边。保持架避免圆柱滚子在滚动时相互接触。
圆柱滚子轴承很有刚性,可以支持高径向负荷,并有因为保持架,使其比起满装设计来更适于高速。带后缀E的轴承滚轮组较大,是以超高承载能力来设计的。
此轴承是可拆分的,因此安装或拆除起来更简便。两轴承环因此具备过盈配合。
有保持架的单列圆柱滚子轴承可以用作非定位轴承、半定位轴承和定位轴承。
高精度圆柱滚子轴承机床用双列精密轴承。允许径向刚度和高精密轴承配置,主要用于主轴径向支持。
包括无挡边整体外圈,有三个挡边的整体内圈,圆柱滚子及黄铜保持架的保持架组件。为了使径向内间隙达到最佳装配,内圈设计有一锥度为1:12的锥孔。圆柱滚子轴承是可以拆卸的,因此这样的设计使安装移除更简单。两轴承环因此具备过盈配合。
满装圆柱滚子轴承有整体内外圈及挡边导向的圆柱滚。因拥有最大数目的滚动元件,这些轴承有极高向心承载能力、很高的刚性、并且适用于特别紧凑的设计。由于运动学条件,它们无法达到使用带保持架的圆柱滚子轴承可能实现的高速度。
满装圆柱滚子轴承可以用作非定位轴承、半定位轴承以及定位轴承。它们可以是单列和双列设计。
四列圆柱滚子轴承作为一种专用轴承,在有限的空间内具有很高的承载能力和较高的极限转速。具有内圈无挡边,结构简单的特点,因此可制造较高的精度级别,可分别安装内圈和外圈组件。适用于更换轧辊频繁的各类冷、热轧钢机的工作辊和支承辊。是各类轧机轧辊的首选轴承类型。
1.结构类型
四列圆柱滚子轴承有四种基本结构类型:
FC型:(一个内圈)四列圆柱滚子轴承。
FCE型:FC型的改进型,外圈无中挡边(滚子长度加长),保持架为窗式结构,可使承载能力较FC型高20%左右,因此也称加强型。
FCD型:双内圈四列圆柱滚子轴承。
FCDP型:外圈带平挡圈的双内圈四列圆柱滚子轴承。
基本结构的四列圆柱滚子轴承其外圈与FCDP型的隔圈的外径径向均有润滑油槽、油孔。
2.保持架
轴承外径小于400保持架一般为黄铜车制实体式,轴承外径大于400的FCDP型一般为钢制穿 FAG圆锥滚子轴承杆式(亦称柱销形,因可装入更多的滚子而比用黄铜车制实体式保持架的承载能力大)。
3.公差
制造的公差等级有0级、6级和5级。
4.径向游隙 一般为径向游隙为3组或4组,某些特殊工况下亦选用0组或2组。
FAG圆锥滚子轴承
FAG圆锥滚子轴承:
圆锥滚子轴承由带有圆锥型槽板和带有保持架的锥形滚子的实心外圈和内圈组成。该轴承不是自保持的。因此带有滚子和保持架的内圈可以从外圈中分离。圆锥滚子轴承可以支持源于同一方向的轴向负载以及高度径向负载。它们通常必须在镜像布置中进行轴向调整以匹配第二个轴承。
FAG轴承单元与轴承箱:
FAG 轴承座和轴承轴承组件已在机械、工厂和其它设备中成功应用,经受了考验。
FAG轴承单元与轴承箱
FAG轴承座是一般由灰铸铁材料做成。如有需要也可提供铸钢和球状石墨铸铁轴承座。因轴承通常是用润滑油润滑,初次填脂后可长期保持润滑效果,所以多数轴承座不带润滑孔。不过,轴承座上带有标志,如需要的话还是可以钻出润滑孔。进行再润滑时,必须确保多余的润滑油可以溢出来。
轴承座孔通常加工成允许轴承在其中活动,并且可以作为非定位轴承。定位轴承配置可以通过嵌入定位圈来实现,如果表格中有列出。定位圈必须特地定购。无定位圈的外壳用于非定位轴承款(L)或定位轴承款(F)中。
FAG外壳的所有未加工的外表面和外壳零件都是通用油漆涂层(颜色RAL 7031,蓝灰)这种油漆可以被所有树脂、聚氨酯、丙烯酸、环氧树脂、氯化橡胶、纤维素以及酸性硬化锤纹灰色磁漆涂盖。加工后的内外表面的防腐保护可以很容易地移除掉。
FAG滑动轴承
根据运行条件,接触密封、非接触密封以及它们的组合都是可以用于轴承外壳的密封。
FAG滑动轴承:
ELGES球面滑动轴承,杆端轴承
免维护ELGES 调心滑动轴承/圆柱滑动轴承
ELGES调心滑动轴承需要维护
免维护ELGES 杆端轴承
ELGES 杆端轴承需要维护
ELGES 液压杆端轴承
FAG应用范畴
自2001年起,FAG成为舍弗勒集团的一部分,并在集团的航天、汽车和工业领域起到了积极和重要的作用。与INA产品相结合,FAG在滚动轴承行业拥有同行业最齐全的产品大纲。涵盖了生产机械、动力传输与铁路、重工业以及消费品行业中所有的应用范畴。
引起FAG轴承失效的原因
根据FAG轴承工作表面磨削变质层的形成机理,影响磨削变质层的主要因素是磨削热和磨削力的作用。下面我们就来分析一下关于FAG轴承失效的原因。
编辑本段德国FAG轴承的磨削热
1.在FAG轴承的磨削加工中,砂轮和工件接触区内,消耗大量的能,产生大量的磨削热,造成磨削区的局部瞬时高温。运用线状运动热源传热理论公式推导、计算或应用红外线法和热电偶法实测实验条件下的瞬时温度,可发现在0.1~0.001ms内磨削区的瞬时温度可高达1000~1500℃。这样的瞬时高温,足以使工作表面一定深度的表面层产生高温氧化,非晶态组织、高温回火、二次淬火,甚至烧伤开裂等多种变化。
表面氧化层
瞬时高温作用下的钢表面与空气中的氧作用,升成极薄(20~30nm)的铁氧化物薄层。值得注意的是氧化层厚度与表面磨削变质层总厚度测试结果是呈对应关系的。这说明其氧化层厚度与磨削工艺直接相关,是磨削质量的重要标志。
非晶态组织层
磨削区的瞬时高温使工件表面达到熔融状态时,熔融的金属分子流又被均匀地涂敷于工作表面,并被基体金属以极快的速度冷却,形成了极薄的一层非晶态组织层。它具有高的硬度和韧性,但它只有10nm左右,很容易在精密磨削加工中被去除。
高温回火层
磨削区的瞬时高温可以使表面一定深度(10~100nm)内被加热到高于工件回火加热的温度。在没有达到奥氏体化温度的情况下,随着被加热温度的提高,其表面逐层将产生与加热温度相对应的再回火或高温回火的组织转变,硬度也随之下降。加热温度愈高,硬度下降也愈厉害。
二层淬火层
当磨削区的瞬时高温将工件表面层加热到奥氏体化温度(Ac1)以上时,则该层奥氏体化的组织在随后的冷却过程中,又被重新淬火成马氏体组织。凡是有二次淬火烧伤的工件,其二次淬火层之下必定是硬度极低的高温回火层。
磨削裂纹
二次淬火烧伤将使工件表面层应力变化。二次淬火区处于受压状态,其下面的高温回火区材料存在着最大的拉应力,这里是最有可能发生裂纹核心的地方。裂纹最容易沿原始的奥氏体晶界传播。严重的烧伤会导致整个磨削表面出现裂纹(多呈龟裂)造成工件报废。
2.FAG轴承因磨削力形成的变质层
在磨削过程中,工件表面层将受到砂轮的切削力、压缩力和摩擦力的作用。尤其是后两者的作用,使工件表面层形成方向性很强的塑性变形层和加工硬化层。这些变质层必然影响表面层残余应力的变化。
冷塑性变形层
在磨削过程中,每一刻磨粒就相当于一个切削刃。不过在很多情况下,切削刃的前角为负值,磨粒除切削作用之外,就是使工件表面承受挤压作用(耕犁作用),使工件表面留下明显的塑性变形层。这种变形层的变形程度将随着砂轮磨钝的程度和磨削进给量的增大而增大。
热塑性变形(或高温性变形)层
磨削热在工作表面形成的瞬时温度,使一定深度的工件表面层弹性极限急剧下降,甚至达到弹性消失的程度。此时工作表面层在磨削力,特别是压缩力和摩擦力的作用下,引起的自由伸展,受到基体金属的限制,表面被压缩(更犁),在表面层造成了塑性变形。高温塑性变形在磨削工艺不变的情况下,随工件表面温度的升高而增大。
加工硬化层
有时用显微硬度法和金相法可以发现,由于加工变形引起的表面层硬度升高。
除磨削加工之外,铸造和热处理加热所造成的表面脱碳层,再以后的加工中若没有被完全去处,残留于工件表面也将造成表面软化变质,促成轴承的早期失效。