卫生间空气净化专用果壳活性炭价格 亿洋牌果壳活性炭
果壳活性炭除油漆味效果!
果壳活性炭吸附是一种固体表面现象,它是利用多孔性固体吸附剂处理气态污染物,使其中的一种或几种组分,在固体吸附剂表面,在分子引力或化学键力的zuo用下,被吸附在固体表面,从而达到分离的目的。佳环椰壳果壳活性炭对甲醛、苯、甲苯、二甲苯、TVOC\乙醇、乙醚、煤油、汽油、苯乙烯、氯乙烯等物质都有吸附功能.
甲醛和苯是人们在装修中主要担心的污染物。但根据最近一份家装调查显示,二甲苯已经“趁机”取代了苯,正成为家装污染的主要物质之一。 专家指出,在国家对苯的限制使用规定没有出台前,装饰材料包括油漆等物质中都含有苯。但国家标准出台后,苯被限制使用,一些油漆厂商现就钻国家规定的空子,用二甲苯来代替苯。由于装修污染导致的伤害事件层出不穷,消费者越来越意识到使用绿色环保装修材料的重要性。目前建材市场上,标称“无苯”漆的不在少数,商家都称自己的产品安全环保,有的还有环境认证标志。但对于是否有甲苯、二甲苯的问题,大多避而不谈。但据报道,中国室内装饰协会室内环境监测中心曾经检测过许多家庭,发现在苯系物的分析数据里,苯的室内含量都符合国家标准,甚至大大低于国家标准,但是在甲苯、二甲
教您治理装修污染的方法
1、塑料密封袋中取出果壳活性炭包摆放在家具的抽屉、柜子内,居室、卫生间、冰箱、鞋内即可,不用打开布袋.
2、新装修居室建议每平米空间摆放1-2包果壳活性炭,多放一些,会帮你吸附更多有害气体。
3、使用时,将果壳活性炭包摆放在污染源附近,分散摆放,可以增强吸附效果。
4、使用时,每隔20-30天,将产品取出在阳光下晒3-5小时,可恢复活性。冬天阳光弱,可在浴霸下烤30分钟(关闭卫生间门,并打开排气扇。),或者用电吹风加热后再放置回原处,可反复使用8-12个月。
行话果壳活性炭
我国果壳活性炭在应用历史简分为三个阶段。
(1)第一阶段使20世纪40年代以前,我国制药工业、化学工业中使用果壳活性炭量大,都用进口货,例如用Carboraffin牌的果壳活性炭。
(2)第二阶段自20世纪50年代初开始,国产果壳活性炭上市。1951年沈阳和抚顺的单管炉厂、青岛的反射炉闷烧法厂、上好的电热
活化法厂,接着又氯化锌活化法厂,1958年福建、杭州、广州、烟台、东北等地纷纷建厂,1966年太原开创斯列普活化法厂,随后
我国陆续开设数以百计的斯列普炉厂。此外,还有不少的转炉、粑式炉等工厂。总生产能力从1951年的三五十吨猛增到20世纪80年
代的近十万吨。
活性碳主要用途:
1.用于液相吸附类活性碳
?自来水,工业用水,电镀废水,纯净水,饮料,食品,医药用水净化及电子超纯水制备。
?蔗糖、木糖、味精、药品、柠檬酸、化工产品、食品添加剂的脱色、精制和去杂质纯化过滤
?油脂、油品、汽油、柴油的脱色、除杂、除味、酒类及饮料的净化、除chou、除杂
?精细化工、医药化工、生物制药过程产品提纯、精制、脱色、过滤。
?环保工程废水、生活废水净化、脱色、脱chou、降COD
2.用于气相吸附类活性碳
?苯、甲苯、二甲苯、丙酮、油气、CS2等有机溶剂吸附与回收。
?香烟过滤嘴、装修除味、室内空气净化(甲醛,苯等的去除),工业用气的净化(如CO2、N2等)
?石化行业生产、天然气净化、脱硫、除chou、废气的治理
?生化、油漆工业、地下场所、皮革工厂、动物饲养场所的空气净化、脱chou。
?烟道气的chou气吸附、硫化物吸附,汞蒸汽的去除,降低戴奥辛的生成。
3.用于高要求领域活性碳
?催化剂及催化剂载体(钯炭催化剂、钌炭催化剂、铑炭催化剂、铂炭催化剂),贵重金属催化剂及合成金刚石、黄金提取。
?血液净化、汽车炭罐、高性能燃料电池、双电层超级电容器、锂电池负极材料、贮能材料、军事、航天等高要求领域。
影响果壳活性炭吸附的主要因素
①果壳活性炭吸附剂的性质
其表面积越大,吸附能力就越强; 果壳活性炭是非极性分子,易于吸附非极性或极性很低的吸附质;果壳活性炭吸附剂颗粒的大小,细孔
的
构造和分布情况以及表面化学性质等对吸附也有很大的影响。
②吸附质的性质
取决于其溶解度、表面自由能、极性、吸附质分子的大小和不饱和度、附质的浓度等
③废水PH值
果壳活性炭一般在酸性溶液中比在碱性溶液中有较高的吸附率。
PH值会对吸附质在水中存在的状态及溶解度等产生影响,从而影响吸附效果。
④共存物质
共存多种吸附质时,果壳活性炭对某种吸附质的吸附能力比只含该种吸附质时的吸附能力差
⑤温度
温度对果壳活性炭的吸附影响较小
⑥接触时间
应保证果壳活性炭与吸附质有一定的接触时间,使吸附接近平衡,充分利用吸附能力。
果壳活性炭化学性
果壳活性炭的吸附除了物理吸附,还有化学吸附。果壳活性炭的吸附性既取决于孔隙结构,又取决于化学组成。
果壳活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含
有的
氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的zuo用而生成。有时还会生成表面硫化物和氯化物。
在活化中原料所含矿物质集中到果壳活性炭里成为灰分,灰分的主要成分是碱金属和碱土金属的盐类,如碳酸盐和磷酸盐等。
这些灰分含量可经水洗或酸洗的处理而降低。
果壳活性炭催化性
果壳活性炭在许多吸附过程中伴有催化反应,表现出催化剂的活性。例如果壳活性炭吸附二氧化硫经催化氧化变成三氧化硫。
由于果壳活性炭有特异的表面含氧化合物或络合物的存在,对多种反应具有催化剂的活性,例如使氯气和一氧化碳生成光气。
由于果壳活性炭和载持物之间会形成络合物,这种络合物催化剂使催化活性大增,例如载持钯盐的果壳活性炭,即使没有铜盐的催化剂存在,
烯烃的氧化反应也能催化进行,而且速度快、选择性高。
由于果壳活性炭具有发达的细孔结构、巨大的内表面积和很好的耐热性、耐酸性、耐碱性,可zuo为催化剂的载体。例如,有机化学中
加氢、脱氢环化、异构化等的反应中,果壳活性炭是铂、钯催化剂的优良载体。
果壳活性炭机械性
(1)粒度:采用一套标准筛筛分法,求出留在和通过每只筛子的果壳活性炭重量,表示粒度分布。
(2)静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积果壳活性炭的重量。
(3)体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积果壳活性炭的重量。
(4)强度:即果壳活性炭的耐破碎性。
(5)耐磨性:即耐磨损或抗磨擦的性能。
这些机械性质直接影响果壳活性炭应用,例如:密度影响容器大小;粉炭粗细影响过滤;粒炭粒度分布影响流体阻力和压降;破碎性影
响果壳活性炭使用寿命和废炭再生。
(1)活性炭处理含铬废水
铬是电镀中用量较大的一种金属原料,在废水中六价铬随PH质的不同分别以不同的形式存在。
活性炭有非常发达的微孔结构和较高的比表面积,具有极强的物理吸附能力,能有效地吸附废水中的Cr(VI),活性炭的表面存在大量的含氧基团如羟基(-OH)、羧基(-COOH)等,它们都有静电吸附功能,对Cr(VI)产生化学吸附售后服务。完全可以用于处理电镀废水可达到国家排放标准。
试验表明:溶液中Cr(VI)质量浓度为50mg/L,PH=3,吸附时间1.5h时,活性炭的吸附性能和Cr(VI)的支队率远达到效果,因此,利用活性炭处理含铬废水的过程是活性炭对溶液中Cr(VI)的物理吸附、化学吸附,化学还原等综合作用的结果。活性炭处理含铬废水,吸附性能稳定,处理效率高,操作费用低,有一定的社会效益和经济效益。
(2)活性炭处理含氰废水
在工业生产中,金银的湿法提取,化学纤维的生产,炼焦,合成氨,电镀,煤气生产等行业均使用qinghauwu或副产qinghauwu,因而在生产过程中必然要排放一定数量的含氰废水。
活性炭用于净化废水一有相当长的砾石,应用于处理含氰废水的文献报道也越来越多,但由于CN、HCN在活性炭上的吸附容量小,一般为3mgCN/gAC~8mgCN/gAC(因品种而异),在处理成本上不合算。
(3)活性炭处理含汞废水
活性炭有吸附汞和含汞化合物的性能,但吸附能力有限,只适宜于处理含汞量低的废水。如果含汞的浓度较高,可以先用化学沉淀法处理,处理好含汞月1mg/L,高时可达2-3mg/L,然后再用活性炭做进一步的处理。
(4)活性炭处理含酚废水
含酚废水广泛来源于石油化工厂、树脂厂、焦化厂和炼油化工厂。径实验证明:活性炭对苯酚的吸附性能好,温度升高不利于吸附,使吸附容量减小:但升高温度达到吸附平衡的时间缩短。活性炭的用量和吸附时间存在值,在酸性和中兴条件下,去除率变化不大;强碱性条件下,苯酚去除率急剧下降,碱性越强,吸附效果越差。
(5)活性炭处理含甲醇废水
活性炭可以吸附甲醇,但吸附能力不强,只是一语处理含甲醇量低的废水。工程运行结果表明,可将混合液的COD从40mg/L降至12mg/L以下,对甲醇的去除率达到93.16%~100%,其出水水质可以满足会用到锅炉脱盐水系统进水的水质要求。
炼油厂的深度处理
炼油厂含有废水,经隔油,气浮和生物处理后,在经砂滤和活性炭过滤深度处理。废水的含酚量从0.1mg/L(经生物处理后)降至0.005mg/L,氰从0.19mg/L降至0.048mg/L,COD从85mg/L降至18mg/L。
随着科学技术的进步和废水处理的特殊要求,活性炭的研究从本身的孔结构和比表面积逐步发展到研究表面官能团对活性炭吸附性能的影响。
例如,活性炭纤维(简称ACF)近年来在处理废水方面受到了科研工作者的重视,它的直径一般为5~20um,其制备原理与传统的活性炭制备相同,即将纤维状碳在800°C以上用水蒸气或二氧化碳火花处理。纤维状活性炭的孔隙结构以微孔为主,中孔很少,几乎没有大孔,比表面积可达2500m2//g,具有吸附和脱附速率决,吸附容量大,导电性高等特点。
最近,人们发现活性炭不仅有吸附特性,同时表现出催化特性,由此而发展起来的催化氧化法日益受到重视,其研究也在不断深化。为了提高处理效率,从研究催化氧化机理出发,改变活性炭的表面结构,提高活性炭的能力,寻找理想的吸附剂。
技术参数: | |||||||||||||||||||||||||||||||
|