.石材的破裂特性
了解石材的破裂特性是掌握液压劈裂机的劈裂原理和进行正确设计和使用设备的基础。大多数岩石的应力—应变曲线,近似直线,见图1-a,并可用F表示。式中:ε一为岩石的应力;δ一为岩石的应变;E一为岩石的杨氏模量。该直线因岩石突然断裂破坏,而在F点终止,表现为典型的脆性破坏特征。
用作建筑材料的岩石,其全应力一应变曲线,见图1-b,虽有所不同,大致可分成OA, AB, BC和CD四段。在OA和AB段,应力、应变近于弹性,并伴有轻微滞变,当加载或卸载时,岩石的结构和性质无不可逆变化;在BC段,应力一应变曲线的斜率,随应力增大而逐渐减小到零,当加载或卸载时,岩石虽将产生不可逆变化,即出现永久变形,但亦不失去抵抗外加载荷的能力,故岩石在该段处于延性状态;在CD段,岩石抵抗载荷的能力随变形的增加而减小,应力由C点的最大值逐渐下降,表现出负的应力一应变曲线斜率,但最终在D点因突然断裂破坏而终止,仍表现为脆性破坏的特性。
岩石单轴受压条件下,产生不规则的纵向裂缝。其破裂处,一部分为剪切破裂状态,而另一部分则是拉伸破裂。即当压头侵人岩石时,在接触处产生剪切破裂,而在其边缘处则引起径向拉应力,结果使脆性岩石发生纵向劈裂。
2液压劈裂机的结构及工作原理
2.1液压劈裂机的劈裂原理
如图2为LC系列液压劈裂机的结构组成及工作原理。该机由动力供给系统(泵站)、控制元件、液压管路、液压缸、楔块组件等构成。工作时,泵向系统提供高压油,经控制元件、液压管路而进人液压缸的无杆腔,推动活塞向下运动,通过楔块组件的放大将纵向的推力转化为横向的劈裂力,使矿岩分开。
图3为尖劈分裂器和尖劈及楔片受力图。如图3-a所示,与液压劈裂机活塞相联的尖劈并不直接劈裂岩石,而是在尖劈两侧还有一对楔形片,即两楔片夹着尖劈组成一个40mm的圆柱体一分裂器。在预定的岩石分裂线上事先钻若干中40mm的孔,然后将分裂器分别插人这些孔内,当液压劈裂机通人高压油后即可在上述孔内同时产生劈裂力,致使岩石按预定的位置和方向裂开。
当楔形压头受压而侵人岩石时,岩石局部发生粉碎或呈塑性变形而形成袋状或球状核,通常称之为密实核。压头在压人岩石过程中,侵人深度不会随载荷增加而均衡增加,只是当其达到某一临界值时,便发生跃进式破碎现象。这时,密实核旁侧的岩石出现崩碎,载荷暂时下跌,压头继续侵人到一个新的深度。
载荷再度上升,侵人和载荷又恢复到某种比例关系。如此循环,直至岩石破裂。整个过程的载荷一一侵深曲线呈波浪形。越是脆性岩石,跃进式侵人特点越明显,塑性材料则较缓和。载荷一侵深曲线各上升段的斜率大致相同,即增加单位载荷所增加的侵深近于常数。曲线下降部分的情况与岩石及加载机构的刚性有关。