CSM反渗透膜元件,其膜片的生产和膜元件卷制是采用世界上少有的自动生产线来完成的,从而保证CSM反渗透膜片性能稳定、膜元件水流道厚度均匀及膜元件在使用过程中的布水均匀;而且由于整个制膜过程均为自动化生产,故此在卷制膜元件的过程中,下料时长度、粘接位置和粘接剂用量精确,从而保证了每个膜元件的有效使用面积;高质量、高性能的材料保证配合现代技术的自动化生产,使用户最终得到高品质的CSM反渗透膜元件。
RO膜是实现反渗透的核心元件,是一种模拟生物半透膜制成的具有一定特性的人工半透膜。一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。有的高分子材料对盐的排斥性好,而水的透过速度并不好。有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。因此一种满意的反渗透膜应具有适当的渗透量或脱盐率。
反渗透膜应具有以下特征:
(1)在高流速下应具有高效脱盐率;
(2)具有较高机械强度和使用寿命;
(3)能在较低操作压力下发挥功能;
(4)能耐受化学或生化作用的影响;
(5)受pH值、温度等因素影响较小;
(6)制膜原料来源容易,加工简便,成本低廉。
反渗透膜的结构,有非对称膜和均相膜两类。当前使用的膜材料主要为醋酸纤维素和芳香聚酰胺类。其组件有中空纤维式、卷式、板框式和管式。可用于分离、浓缩、纯化等化工单元操作,主要用于纯水制备和水处理行业中。
原理:反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。
RO膜解剖图
反渗透时,
溶剂的渗透速率即液流能量N为:
N=Kh(Δp-Δπ) 式中Kh为水力渗透系数,它随温度升高稍有增大;Δp为膜两侧的静压差;Δπ为膜两侧溶液的渗透压差。
稀溶液的渗透压π为: π=iCRT 式中i为溶质分子电离生成的离子数;C为溶质的摩尔浓度;R为摩尔气体常数;T为绝对温度。
反渗透通常使用非对称膜和复合膜。反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。
反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而取得净制的水。也可用于大分子有机物溶液的预浓缩。由于反渗透过程简单,能耗低,近20年来得到迅速发展。现已大规模应用于海水和苦咸水(见卤水)淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,目前其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。
工作原理
对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶质的薄膜称之为理想半透膜。当把相同体积的稀溶液(例如淡水)和浓溶液(例如盐水)分别置于半透膜的两侧时,稀溶液中的溶剂将自然穿过半透膜而自发地向浓溶液一侧流动,这一现象称为渗透。当渗透达到平衡时,浓溶液侧的液面会比稀溶液的液面高出一定高度,即形成一个压差,此压差即为渗透压。渗透压的大小取决于溶液的固有性质,即与浓溶液的种类、浓度和温度有关而与半透膜的性质无关。若在浓溶液一侧施加一个大于渗透压的压力时,溶剂的流动方向将与原来的渗透方向相反,开始从浓溶液向稀溶液一侧流动,这一过程称为反渗透。 反渗透是渗透的一种反向迁移运动,是一种在压力驱动下,借助于半透膜的选择截留作用将溶液中的溶质与溶剂分开的分离方法,它已广泛应用于各种液体的提纯与浓缩,其中最普遍的应用实例便是在水处理工艺中,用反渗透技术将原水中的无机离子、细菌、病、有机物及胶体等杂质去除,以获得高质量的纯净水。
RO膜过滤原理
CSM反渗透膜在应用过程中的分离特性比较:
1)一般情况下,分离无机物易于有机物,但对于分子量大于100的有机物分离效果和去除效果也很好。
2)分离溶解在水中电解质更易于非电解质物质。
3)在分离电解质物质时,被分离物质所带电荷越高,则分离效果就越好(即3价离子分离效果优于2价离子分离效果;同样2价离子分离效果要优于1价离子分离效果)。
4)无机离子的脱除效果受其特有的水合离子数和水合离子半径的影响-水合离子半径越大无机离子越容易被脱除。
5)在分离非电解质时,分子越大越容易被分离。
6)溶液中的气体容易造过膜,故此氨、氯、二氧化碳、氧、硫化氢等物质脱除率较低。
7)弱酸的脱除率低,当然也与被分离酸的分子量有关-即随着分子量的减少,膜对其分离的效果也就越差。膜对有机酸的脱除率依次是:柠檬酸>酒石酸>醋酸。CSM反渗透膜的分离特性如上所述。在工程实践中,我们对溶质分离特性的理解应综合考虑溶质和膜的选择性吸附、静电作用、氢键结合性等因素。