丛 书 名:
出 版 社:电子工业出版社ISBN:9787121012563出版时间:2005-08-01版 次:1页 数:428装 帧:精装开 本:16开所属分类:图书>科学与自然>物理学
编辑本段内容简介
本书是一部经典光学世界名著。全书以麦克斯韦宏观电磁理论为基础,系统阐述光在各种媒质中的传播规律,包括反射、折射、偏振、色散、干涉、衍射、散射以及金属光学(吸收媒质)和晶体光学(各向异性媒质)等。几何光学也作为极限情况(波长l→0)而纳入麦克斯韦方程系统,并从衍射观点讨论了光学成像的像差问题。新版增加了计算机层析术、宽带光干涉、非均匀媒质光散射等内容。
本书引文丰富且所涉广泛,上溯历史,下至近代,旁及有关学科和应用,故能于一专著中给读者以宽阔视野与充分求索之空间。全书共十五章,中译本分上下册出版。上册包括“历史引言”和前八章,内容多属基础;下册包括后七章和附录,层次较深。
本书基础性、系统性和学术性兼备,可供光学教学与研究人员包括高年级本科生、研究生等阅读和参考。
编辑本段作者简介
马科斯·玻恩(1887—1970)是20世纪最杰出和最有影响的物理学家之一,曾对量子力学基础的奠定做出过重大贡献,并因此获得1954年诺贝尔物理学奖。但他在物理学的其他分支,例如晶格动力学理论方面的成就也十分突出。他所创建的哥廷根理论物理学派当时名列世界首位,对物理学的发展产生过很大影响。从1936年到1953年,他一直是英国爱丁堡大学的Tait教授。
玻恩著作丰富,一生发表过论文约300篇,出版书著30部——本书《光学原理》的前Optik(1933)亦为其名著。除诺贝尔奖外,还接受过众多荣誉。他曾被全世界许多学术团体选为荣誉会员并授予多项名誉学位。
编辑本段目录
历史引言
第1章 电磁场的基本性质
1.1 电磁场
1.1.1 麦克斯韦方程
1.1.2 物质方程
1.1.3 突变面处的边界条件
1.1.4 电磁场的能量定律
1.2 波动方程和光速
1.3 标量波
1.3.1 平面波
1.3.2 球面波
1.3.3 谐波和相速
1.3.4 波包和群速
1.4 矢量波
1.4.1 一般的电磁平面波
1.4.2 谐电磁平面波
(a)椭圆偏振
(b) 线偏振和圆偏振
(c) 偏振态的表征——斯托克斯参量
1.4.3 任意形式的谐矢量波
1.5 平面波的反射和折射
1.5.1 反射定律和折射定律
1.5.2 菲涅耳公式
1.5.3 反射率和透射率;反射和折射产生的偏振
1.5.4 全反射
1.6 波在分层媒质中的传播和介质膜理论
1.6.1 基本微分方程
1.6.2 分层媒质的特性矩阵
(a) 均匀介质膜
(b) 分层媒质作为均匀薄膜的膜堆
1.6.3 反射系数和透射系数
1.6.4 均匀介质膜
1.6.5 周期性分层媒质
第2章 电磁势和电磁极化
2.1 真空中的电动势
2.1.1 矢势和标势
2.1.2 推迟势
2.2 极化和磁化
2.2.1 用极化强度和磁化强度表示矢势和标势
2.2.2 赫兹矢量
2.2.3 一个线性电偶极子的场
2.3 洛伦兹-洛伦茨公式和初等色散理论
2.3.1 介电极化率和磁极化率
2.3.2 有效场
2.3.3 平均极化率:洛伦兹-洛伦茨公式
2.3.4 初等色散理论
2.4 用积分方程处理电磁波的传播
2.4.1 基本积分方程
2.4.2 埃瓦尔德-欧西恩消光定理和洛伦兹-洛伦茨公式的严格推导
2.4.3 借助埃瓦尔德-欧西恩消光定理处理平面波的折射和反射
第3章 几何光学基础
3.1 对于极短波长的近似处理
3.1.1 程函方程的推导
3.1.2 光线和几何光学的强度定律
3.1.3 振幅矢量的传播
3.1.4 推广和几何光学的适用范围
3.2 光线的一般性质
3.2.1 光线的微分方程
3.2.2 折射定律和反射定律
3.2.3 光线汇及其焦点特性
3.3 几何光学的其他基本定理
3.3.1 拉格朗日积分不变式
3.3.2 费马原理
3.3.3 马吕斯和杜平定理及一些有关定理
第4章 光学成像的几何理论
4.1 哈密顿特征函数
4.1.1 点特征函数
4.1.2 混合特征函数
4.1.3 角特征函数
4.1.4 旋转折射面的角特征函数近似形式
第5章 像差的几何理论
第6章 成像仪器
第7章 干涉理论基础和干涉仪
第8章 衍射理论基础
第9章 像差的衍射理论
第10章 部分相干光的干涉和衍射
第11章 严格的衍射理论
第12章 光被超声波衍射
第13章 不均匀媒质产生的散射
第14章 金属光学
第15章 晶体光学
附录A 变分法
附录B 光学,电子光学和波动力学
附录C 一些积分的渐近近似
附录D 狄拉克δ函数
附录E 严格推导洛伦兹-洛伦茨定律所用的一个数学引理(2.4.2节)
附录F 电磁场中不连续性的传播(3.1.1节)
附录G 泽尼克圆多项式(9.2.1节)
附录H 谱相干度(10.5节)不等式|μ12(ν)|≤1的证明
附录I 倒易不等式(10.8.3节)的证明
附录J 两个积分(12.2.2节)的计算
附录K 标量波场中的能量守恒(13.3节)
附录L 琼斯引理(13.3节)的证明
作者索引
激光焊接机
求助编辑百科名片
激光焊接是激光材料加工用的机器,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。
目录
主要特性激光焊接机的种类激光焊接机的工作原理激光焊接的技术工艺参数激光焊接机的主要优点
编辑本段主要特性 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。
高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。
编辑本段激光焊接机的种类 激光焊接机又常称为激光焊机、雷射焊接机、镭射焊机、激光冷焊机、激光氩焊机、激光焊接设备等。按其工作方式常可分为激光模具烧焊机(手动激光焊接设备)、自动激光焊接机、首饰激光焊接机、激光点焊机、光纤传输激光焊接机、振镜焊接机、手持式焊接机等,专用激光焊接设备有传感器焊机、矽钢片激光焊接设备、键盘激光焊接设备。适用于珠宝首饰、电池镍带、集成电路引线、钟表游丝、显像管、电子枪组装、传感器、钨丝、大功率二极管(三极管)、铝合金、笔记本电脑外壳、手机电池、模具、电器配件、滤清器、油嘴、不锈钢制品、高尔夫球头、锌合金工艺品等焊接。
可焊接图形有:点、直线、圆、方形或由AUTOCAD软件绘制的任意平面图形。
编辑本段激光焊接机的工作原理 激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池。它是一种新型的焊接方式,主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。
编辑本段激光焊接的技术工艺参数 (1)功率密度。 功率密度是加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型焊接中,功率密度在范围在
(2)脉冲波形。 脉冲波形在焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度束射至材料表面,金属表面将会有的能量反射而损失掉,且反射率随表面温度变化。在一个脉冲作用期间内,金属反射率的变化很大。
(3)脉冲宽度。 脉宽是脉冲焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。
(4)离焦量对焊接质量的影响。 焊接通常需要一定的离做文章一,因为焦点处光斑中心的功率密度过高,容易蒸发成孔。离开焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,加热材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔
编辑本段激光焊接机的主要优点 1、速度快、深度大、变形小。
2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。
4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。
5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。
6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。
7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件[1]
参考资料