论流量;Q0 为设计流量;k1, k2 为比例系数。本文将从如何减少流体的水力损失中的摩阻损失 Δh2, 探讨解决的方法。根据阻力损失理论,流体流动分为层流区、过渡 区和湍流区,取决于雷诺系数 Re;离心泵中的流体雷 诺系数 Re>4000,流动进入湍流区,摩擦系数λ不再随 Re 变化,其值取决于相对粗糙度ε/d。即在锥形轮毂体上从吸入口沿轴向延伸。该型叶轮的泵兼具有容积泵和离心泵的作用,悬浮性颗粒在叶片中流过时,不撞击泵内任何部位,故无损性好。对输送物的破坏性小。由于螺旋的推进作用,悬浮颗粒的通过性强,所以采用该型式叶轮的泵适宜于抽送含有大颗粒和长纤维的介质,以及高浓度的介质。在对输送介质的破坏有严格要求的场合下具有明显的特点。从性能上来讲,该泵具有陡降的扬程曲线,功率曲线较平坦。折叠压水室结构污水泵采用的压水室最常见的是蜗壳,在内装式潜水泵中多选用径向导叶或流道式导叶。蜗壳有螺旋型、环型和中介型三种。螺旋形蜗壳基本上不用在污水泵中。环形压水λ=1/[1.74-2log(2ε/d)]2阻力损失 hf 与摩擦系数λ成正比关系。 可见,如何减小泵体内的粗糙度ε,进而减低局部湍流程度,是提高水泵效率的手段之一。 另外,从泵受腐蚀角度来看。金属表面粗糙、局部湍流剧烈时,加快了金属的腐蚀速度,使氧化保护 层提早脱落被水流带走;同时局部湍流也容易导致汽蚀,气泡毁灭时产生的高强冲击力使金属表面层疏 松,从而加深腐蚀情况。某些工况下,在含有固体砂 粒的流体中,由于磨粒切削磨损,泵表面层变得更加粗糙,甚至穿孔。图 1 为某化工厂冷却水循环泵的腐蚀状况。常规减阻和焊接修复方法的弊端常规的减低阻力损失的方法为精密机加工,抛光等;或采用不锈钢材质以提高表面光洁度,但是这样 会大大增加成本。抛光的金属表面并不能解决腐蚀问题,尤其在海 水介质条件下,氯离子浓度非常高,极易侵蚀不锈钢 表面。遭受腐蚀后的金属表面的凹坑和裂缝,如果用堆 焊的方法修复,容
您对此产品的咨询信息已成功发送给相应的供应商,请注意接听供应商电话。
对不起,您对此产品的咨询信息发送失败,请稍后重新发起咨询。