气缸驱动系统自20世纪70年代以来就在工业化领域得到了迅速普及. 气缸适用于作往复直线运动,尤其适用于工件直线搬运的场合. 20世纪90年代开始,电机和微电子控制技术迅速发展,使电动执行器的应用迅速扩大.在气动
执行器和电动执行器的选择上,特别是在工业自动化需求最多的PTP输送场合,一直没有充足的数据来论述两者选择标准. 本文从运行能耗的角度探讨两种执行器的能量消耗问题. 能耗评价方法 气动执行器运行消耗的是压缩空气. 压缩空气输送过程中,经过节流阀、管道弯头等阻性元件后,会有一定的压力损失. 另外由于工厂普遍存在接头、气缸或电磁阀处的空气泄露. 尽管安装时的泄漏量标准低于5%,但很多工厂的泄漏量10%~40% . 泄露也将导致一定的压力损失。气动执行器消耗的是压缩空气,需要将消耗压缩空气转化为压缩机的耗电. 而电动执行器可采用直接测量得到耗电量,因此可将两种执行器在相同工况下的耗电量作为能耗评价依据
直连电动缸
特点:伺服电机与电动缸的传动丝杠通过特殊联轴器相连接,使伺服编码器直接反馈电动缸的活塞杆移动量,减少了中间环节的惯量和间隙,提高了控制性和控制精度,同时还有双导杆型、滑台型供客户选择,种类繁多。
伺服电机与电动缸的主要零部件均采用国内外优质产品,性能稳定,故障率低、可靠性高。
用途:工件及推料机的升降
产品推出(推入)
工件的压入、嵌合
折返电动缸
特点:折返电动缸的电机和缸体部分平行安装,通过同步带及同步带轮与电动缸的传动丝杆相连接,除具有直线式电动缸的特点外,并由于总长短,适合安装位置比较小的场合,同时也开发了双导杆型、滑台型瞒足客户不同需求。
折返型电动缸选用的同步带,具有强度高、间隙小、寿命长等特点,使整个电动缸具有较高的控制性和控制精度。
用途:工件及推料机的升降
产品推出(推入)
工件的压入、嵌合
工作原理编辑
1、伺服系统(servo mechanism)是使物体的位置、方位、
状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很确的控制电机的转动,从而实现确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
2、交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。
3、伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。