本文详细地介绍了有限元法及预估反算法计算铠装螺线管内
点场强,进而确定漏磁系数 σ。实测结果表明,理论计算值与
测值吻合。
在铠装螺线管磁系设计研究时,以往对漏磁系数 σ 的确定,
计者常凭借经验来选择。然而,σ 是磁系设计中很关键的一个
数,σ过小,磁系达不到所要求的场强;σ过大,则会导致制造
本和生产时能耗的急剧增大。由此可见,采用更为合理可靠的
法来确定漏磁系数σ,将设计者从仅仅依赖于经验的困境中解
出来,是磁系设计研究的重要课题。
研究表明,可采用有限元法及预估反算法,精-确地计算螺线
内腔中点场强及其他各点场强,并由此可确定该磁系的漏磁系
σ,进而进行磁势的设计计算。
由表2可知,理论计算值与实测值的相对误差在0.15% 耀
.88%之间。考虑到测量仪表本身精度及测定中的系统误差,可
认为,理论值与实测值是吻合得很好。
5 结 语
(1)在进行铠装螺线管磁系设计时,可采用有限元法及预估
算法,精-确地计算螺线管内腔中点场强及其他各点场强,并由
可确定该磁系的漏磁系数σ,进而进行磁势的设计计算。
(2)对实测的计算结果表明,当导线规格和螺线管几何尺寸
变且铁铠未达饱和时,漏磁系数σ为一常数,与电流密度或磁
的大小无关。
(3)实测结果表明,理论计算值与实测值吻合,说明采用有
元法进行铠装螺线管磁系的漏磁系数计算是可行的。
由公式(7)知,铠装螺线管内腔的磁场强度与螺线管长度无
,只与其单位长度的安匝数有关。上式也就是无限长螺线管磁
强度的表达式,因此,铠装螺线管的磁场特性和无限长螺线管
一样。
这一结论可以大大简化铠装螺线管磁场强度的计算,因而有
要意义。结论的实质可以用电磁场理论中的镜像法
如果未铠装螺线管的磁场强度用轴线中点的磁场强度H0表
示,则铠装与未铠装时磁场强度的比值K为
34