(l)加热管在两端通常有较长的冷端,并不能起到加热的作用。
(2)加热段的功率设计尽量不超过10瓦特/厘米的限制。如30厘米长的加热管,功率尽可能不要超过300瓦。如果设计功率超过这个限制,加热管表面负荷较高,钢管易氧化腐蚀,造成短路。
(3)对于温度高于250℃的模具设计,采用加热管有一定难度。我曾经利用加热管升温达到420℃,但是这种成型温度对加热管质量要求较高,需要经常检查电路的通畅与短路与否。因为这种条件下加热管、接线端子、连接用的铜线、钢片等介质非常易于氧化,从而导致断路。因此对电传输介质需要进行特殊处理,尽量避免使传导电线暴露在空气中,延长导线的使用寿命。
烙铁芯通常也被作为模具加热管的一种,特点是单位长度功率高(通常直径10mm,长8cm规格的烙铁芯可以达到150瓦的输出功率),耐用,安全性好,不易形成击穿短路,可以通过钻盲孔来埋设,缺点是难以定制设计,拆换时易碎、断。
电路设计中不可缺少保险、空气开关等保险措施,操作地由要保持干净整洁,绝缘良好,操作中勤于检查电气故障,防止不必要的危险。
美丽的荷花出淤泥而不染,从荷叶上滚落的水珠可以清除其上吸附的灰尘和细菌,科学家将这种现象称之为荷叶的“自清洁效应”或“荷叶效应”。
1997年德国植物学家威廉·巴斯洛特教授从中得到启发,成功研制出易于清洁建筑物及交通工具表面的涂料。最近,美国密西根大学的研究人员通过开发理论模型,首次成功将纳米毛状结构与微观结构和化学组成分离开来,对荷叶自清洁效应的本质原理进行研究。
当水滴落在荷叶上时,荷叶与水珠间形成一个高度的接触角(大于90度),使之聚集成珠状而不扩散。通常,人的皮肤具有轻微疏水性,接触角大约为90度,而荷叶接触角接近170度,叶子表面极度疏水。但是科学家发现,尽管实际接触荷叶的雨水很少,水滴滑落并不是没有摩擦,水滴带走了叶子上的尘土和细菌,起到“自清洁”的功能。
科学家首次将荷叶的纳米毛状结构与微观结构和化学组成分离开来。他们发现,荷叶表面除了含有蜡质成分,“荷叶效应”的产生与荷叶的两种结构有关,一种是微米级的凸起,一种是纳米级的毛状结构。含有两种结构的荷叶的接触角为142度,只含有微米结构的荷叶接触角为126度,单独只含蜡质表面的接触角为74度。科学家认为,纳米级的毛状结构使接触角增加16度,这两种结构是“荷叶效应”的主要成因。
“荷叶效应”作为一个很好的模型,可以用于诸多的领域的研究,如基于荷叶效应生产的涂料可方便房屋或建筑物表面的清洁,未来荷叶效应将有更广阔的发展前景