

工作原理
高能UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧,臭氧对有机物具有极强的氧化作用;而异味高分子物质(如硫化氢、VOC类,苯、甲苯、二甲苯等)在高能紫外线光束照射下,分子链断裂;游离状态的污染物分子与臭氧氧化结合分解成无害小分子、化合物,如CO2、H2O等。
利用纳米TiO2为光催化剂,在溶液或空气中发生多相光催化降解污染物的反应过程大致包括以下几个主要步骤:
1)TiO2在光的照射下,被能量大于或等于其禁带宽度的光子所激发,产生具有一定能量的
光生电子(e-)和空穴(h+);
2)光生电子(e-)和空穴(h+)在TiO2颗粒的内部以及界面之间的转移或失活;
3)光生电子(e-)和空穴(h+)到达TiO2粒子表面并与其表面吸附物质或溶剂中的物质发生相互作用,即发生氧化还原反应,从而产生一些具有强氧化性的自由基团(??OH,O2-)和具有一定氧化能力的物质(H2O2)。
4)上述产生的具有强氧化性的自由基团和氧化性物质与被降解污染物充分作用,使其氧化或降解为CO2与H2O。
当TiO2光催化剂受到大于其禁带能量的光照射时,在其内部和表面都会产生光生电子和光生空穴。一部分光生电子和光生空穴参与光催化反应,另外一部分光生电子与空穴会立即发生复合,以热量的形式散发出去。如果二氧化钛中没有电子和空穴俘获剂,储备的光能在几毫秒的时间内就会通过光生电子和空穴的复合以热能的形式释放出来,或以其它形式散发掉;如果在二氧化钛的表面或者体相中有俘获剂或表面缺陷态时,能够有效阻止光生电子和空穴的重新复合,使电子和空穴有效转移,从而能在催化剂表面发生一系列的氧化-还原反应,将吸收的光能转换为化学能。
利用高能臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需氧分子结合,进而产生臭氧。UV+O2→O一+O*(活性氧)O+O2→O3(臭氧),众所周知臭氧对有机物具有极强的氧化作用,对恶臭气体及其它刺激性异味有立竿见影的清除效果。