活性碳吸附设备
活性碳在活化过程中,巨大的表面积和复杂的孔隙结构逐渐形成,活性碳的孔隙的半径大小可分为:大孔 半径>20 000nm ;过渡孔 半径150 ~20 000nm;微孔 半径< 150nm;活性碳的表面积主要是由微孔提供的,活性碳的吸附可分为物理吸附和化学吸附,而吸附过程正是在这些孔隙中和表面上进行的,活性碳的多孔结构提供了大量的表面积,从而使其非常容易达到吸收收集杂质的目的。就象磁力一样,所有的分子之间都具有相互引力。正因为如此,活性炭孔壁上的大量的分子可以产生强大的引力,从而达到将介质中的杂质吸引到孔径中的目的,这就是物理吸附。必须说明的是,这些被吸附的杂质的分子直径必须是要小于活性炭的孔径,这样才可能保证杂质被吸收到孔径中。这也就是为什么我们通过不断地改变原材料和活化条件来创造具有不同的孔径结构的活性炭,从而适用于各种杂质吸收的应用。
当甲醛、苯、甲苯等有害分子运动碰到活性炭表面时,便被捕捉。这些分子又被接着未碰的污染气体分子碰撞向孔深处,直至孔隙被这些分子填满为止。
性能特点
1、吸附效率高,能力强;
2、能够同时处理多种混合有机废气;净化效率≥95%;
3、设备构造紧凑,占地面积小,维护管理简单,运转成本低廉;
4、采用自动化控制运转设计,操作简易、安全;
5、全密闭型,室内外皆可使用。
设备的选用
吸附塔从性能上分:高效型、标准型和经济型。
吸附塔从材质上分:PVC、FRP/PVC、镀锌钢板和304不锈钢。
有关详细技术参数及选型,需公司技术部设计选型方可确定。
活性炭吸附工作原理说明
吸附可分为物理吸附和化学吸附;是由于吸附剂与吸附质分子之间的静电力或引力导致物理吸附引起的,当固体和气体之间的分子引力大于气体分子之间的引力时,即使气体的压力低于与操作温度相对应的饱和蒸气压,气体分子也会冷凝在固体表面上,物理吸附是一种放热过程。化学吸附亦称活性吸附,是由于吸附剂表面与吸附质分子间的化学反应力导致化学吸附,它涉及分子中化学键的破坏和重新结合,因此,化学吸附过程的吸附热较物理吸附过程大。在吸附过程中,物理吸附和化学吸附之间没有严格的界限,同一物质在较低温度下可能发生物理吸附,而在较高温度下往往是化学吸附。活性炭吸附以物理吸附为主,但由于表面活性剂的存在,也有一定的化学吸附作用。
活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 活性炭的多孔结构为其提供了大量的表面积,能与气体(杂质)充分接触,从而赋予了活性炭所特有的吸附性能,使其非常容易达到吸收收集杂质的目的。就象磁力一样,所有的分子之间都具有相互引力。正因为如此,活性炭孔壁上的大量的分子可以产生强大的引力,从而达到将有害的杂质吸引到孔径中的目的。