绝缘中存在局部放电时,当放电较小并在故障点引起的温度高于正常温度不多时,由油裂解的产物主要是甲烷和氧;当局部放电故障扩大,形成局部爬电或火花、电弧放电时,会引起局部高温,产生乙炔、乙烯和一氧化碳、二氧化碳。如利用四种特征气体的三比值法,可用来判断变压器故障性质,但实际上对电力设备进行绝缘故障判断时,仅根据一次测量数据往往是不够的,宜利用色谱分析,观察各有害气体随时间的增量。并和局部放电超声测量和电测法数据作比较,进行综合判断,才能更加有效地判断故障性质。 当故障涉及到固体绝缘时,会引起一氧化碳和二氧化碳含量的明显增长。但根据现有统计资料,固体绝缘的正常老化过程与故障情况下劣化分解,表现在油中一氧化碳的含量上,一般情况下没有严格的界限;二氧化碳含量的规律更不明显。因此,在考察这两种气体含量时更应注意结合具体变压器的结构特点,如油保护方式、运行温度、负荷情况、运行历史等情况加以分析,以尽可能得出正确的结论
局部放电发生时,常伴有光、声、热等现象的发生,对此,局部放电检测技术中也相应出现了光测法、声测法、红外热测法等非电量检测方法。较之电检测法,非电量检测方法具有抗电磁干扰能力强、与试样电容无关等优点。 1.超声波法测试局部放电 利用测超声波检测技术来测定局部放电的位置及放电程度,这种方法较简单,不受环境条件限制。但灵敏度较低,不能直接定量。在进行局部放电测量中当发现变压器有大于5000pc的故障放电,超声波声测量方法常用于放电部位确定及配合电测法的补充手段。但声测法有它独特的优点,即它可在试品外壳表面不带电的任意部位安置传感器,可较准确地测定放电位置,且接收的信号与系统电源没有电的联系,不会受到电源系统的电信号的干扰;因此进行局部放电测量时,以电测法和声测法同时运用。两种方法的优点互补,再配合一些信号处理分析手段,则可得到很好的测量效果。 局部放电测量通常选用密封结构的超声传感器,其结构原理见图3-6。它是直接把压电陶瓷安装在金属外壳之上,带动外壳一起振动,并在金属壳里填充树脂作为密封。
一、 概述: 局部放电试验是电力设备绝缘的主要试验项目,是根据国际及国内目前最‘’新技术进展而开发的HTJF-H局部放电检测系统,它集计算机控制,数字采样,显示及打印技术与一体。以崭新的二维及三维图形显示局部放电图谱信息,HTJF-H系统可单路或双路输入信号,双路输入方式使其具备平衡回路检测、脉冲极性鉴别检测功能。 HTJF-H系统就其检测方法、测量回路、技术性能参数完全符合GB7354-87及ICE-270局部放电测量标准要求。