2.铸件的凝固方式
一般将铸件的凝固方式分为三种类型。逐层凝固方式、体积凝固方式 (或称糊状凝固方
式)和中间凝固方式。铸件的凝固方式取决于凝固区域的宽度。
72
T1 和T2 是铸件断面上两个不同时刻的温度场。
从图中可观察到,恒温下结晶的金属,在凝固过程中其铸件断面上的凝固区域宽度等于
零。断面上的固体和液体由一条界线 (凝固前沿)清楚地分开。随着温度的下降,固体层不
断加厚,逐步到达铸件中心。这种情况为 “逐层凝固方式”。
如果合金的结晶温度范围很小,或断面温度梯度很大时,铸件断面的凝固区域则很窄,
也属于逐层凝固方式 [图133(b)]。
② 晶体缺陷模型 包括微晶模型、空穴模型、位错模
或综合模型等,假设液态金属同样存在与固相类似的晶
缺陷,能定性地解释过热度不大的液态金属结构特征
接受。该模型认为,液态金属中存在 “能量起伏”和 “结
处于热运动的原子能量有高有低,同一原子的能量也随时
间不停变化,时高时低,这种现象称之为 “能量起伏”。另一方面,液态金属中存在由大量
不停 “游动”着的原子集团组成,集团内为某种有序结构,处于集团外的原子则处于散乱的
无序状态;并且这些原子集团不断的分化组合,时而长大,时而减小,时而产生,时而消失。
②σSG<σLS时,cosθ为负值,即θ>90°。此情况下,液体倾向于形成球状,称之为液体能润湿固体。θ=180°为完全不润湿。
2影响界面张力的因素
(1)熔点 原子间结合力大的物质,其熔点高,表面张力也大。表13为几种金属的熔和表面张力。
(2)温度 对于多数金属和合金,
度升高,表面张力降低,即dσdt<0。这因为,温度升高时,液体质点间距增,表面质点的受力不对称性减弱,因表面张力降低。当达到液体的临界温时,由于气液两相界面消失,表面张等于零。但是,对于某些合金,如铸
、碳钢、铜及其合金等,其表面张力随温度的升高而增大,即dσdt>0。如图1所示。