The devices include two serial communications interface (SCI) modules (SCI-A, SCI-B). The SCI module
supports digital communications between the CPU and other asynchronous peripherals that use the
standard non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each
has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in
the full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,
overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit
baud-select register.
Features of each SCI module include:
•
Two external pins:
–
SCITXD: SCI transmit-output pin
–
SCIRXD: SCI receive-input pin
NOTE: Both pins can be used as GPIO if not used for SCI.
–
Baud rate programmable to 64K different rates:
•
Data-word format
–
One start bit
–
Data-word length programmable from one to eight bits
–
Optional even/odd/no parity bit
–
One or two stop bits
•
Four error-detection flags: parity, overrun, framing, and break detection
•
Two wake-up multiprocessor modes: idle-line and address bit
•
Half- or full-duplex operation
•
Double-buffered receive and transmit functions
•
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms
with status flags.
–
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX
EMPTY flag (transmitter-shift register is empty)
–
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
•
Separate enable bits for transmitter and receiver interrupts (except BRKDT)
•
NRZ (non-return-to-zero) forma