产品说明
一、DH8814D DH8814F DH8814G 概述
智能化介质损耗测试仪是一种先进的测量介质损耗(tgδ)和电容容量(Cx )的仪器,用于工频高压下,测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx )。它淘汰了QSI高压电桥,具有操作简单、中文显示、打印,使用方便、无需换算、自带高压,抗干扰能力强 等优点。JSY—03体积小、重量轻,是我厂的第三代智能化介质损耗测试仪。
二、 技术指标
1、 环境温度:0~40℃(液晶屏应避免长时日照);
2、 相对湿度:30%~70%;
3、 供电电源:电压:220V±10%,频率:50±1Hz
4、 外形尺寸:长×宽×高=490mm×300mm×390mm
5、 重量:约18Kg
6、 输出功率:1KVA
7、 显示分辨率:4位
8、 测量范围:介质损耗(tgδ):0-50%
电容容量(Cx)和加载电压: 2.5KV档:≤ 300nF( 300000pF)
3KV档:≤200nF( 200000pF)
5KV档:≤ 76nF( 76000pF)
7.5KV档:≤ 34nF( 34000pF)
10KV档:≤ 20nF( 20000pF)
9、 基本测量误差:
介质损耗(tgδ): 1%±0.07%(加载电流20μA~500mA)正接
介质损耗(tgδ): 2%±0.09%(加载电流 5μA~20μA)反接
电容容量 (Cx):1.5%±1.5pF
三、 结构
仪器为升压与测量一体化结构,输出电压2.5KV~10KV五档可调,以适应各种需要,在测量时无需任何外部设备。接线与QSI电桥相似,但比其方便。
⑴ 显示窗————————液晶显示屏。
⑵ 试验电压选择开关———当开关置于“关”时,仪器无高压输出。
⑶ 操作键盘———————选择测量方式、起动、停止、打印等操作。
⑷ 电源插座——————— 保险丝用5A。
⑸ 电源开关———————电源通断。
⑹ 起动灯————————指示高压输出。
⑺ 打印机————————打印测试结果。
★ ⑻接地端子——————使用前,必须将该端子可靠接地!!!
★ ⑼ 测量电流输入端IX———有两个出线头,中心头(红色,有CX标记)应与被 试品一端相接,屏蔽头(黑色,有E标记)是仪器内部高压输出
一个参考端,在 正接法测量时应接地;在反接法测量时应浮空;外接法参见“外接高压法”。
★ ⑽ 标准电流输入端IN———仅当外接标准电容器进行测量时才用,该端应与外接 标准电容器 一端相连IN必须小于100mA!!!
★ ⑾ 测量高压输出端UH——只有一个大铁夹出线头(有UH标记),与被试品一端 相接。
四、 工作原理
仪器测量线路包括一路标准回路和一路测试回路。
标准回路由内置高稳定度标准电容器与标准电阻网络组成,由计算机实时采集标准回路电流与测试回路的电流幅值及其相位差,并由之算出被测试品的电容容值(Cx )和其介质损耗(tg)。
数据采集电路全部采用高稳定度器件,采集板和采集计算机被铁盒完全浮空屏蔽,仪器的外壳接地屏蔽;另外使用了光导数据、浮空地、大面积地、单点地、数字滤波等抗干扰技术,加之计算机对数百个电网周期的数据进行处理,故测量结果稳定、、可靠。
仪器高压变压器的高压侧和测量线路都是浮地的,用户可根据不同的测量对象和测量需要,灵活地采用多种接线方式。如采用“正接线法”进行测量时,可将“E”点接地;而当采用“反接线法”进行测量时,可将“UH”点接地,而将E点浮空。
图中除测试品Cx 外,其余为本仪器。细线框内部分对仪器外壳能承受15KV工频高压5分钟,额定耐压10KV。仪器内附标准电容CN,名义值为50PF,tgδ≤0.0001,耐压10KV。高压变压器,额定输出功率为1KVA。
★“E”点为仪器的内屏蔽与测量电缆的屏蔽层相连,不是大地,与仪器的外壳也不连通!!!
五、 使用方法
▲ ▲▲安全操作注意事项
1、 使用时必须将仪器的接地端子可靠的接地。
2、 只有关闭仪器电源,试验电压选择开关置于“关”位置时,接触仪器的后部及其测量线缆与被试品才被认为是安全的。
3、 仪器在测量时,严禁操作“试验电压”选择开关。
4、 正接线法UH端为高电压,反接线法IX端为高电压,使用时必须根据实际情况,将带高压的线缆与地保持足够的距离。
5、 不得更换不符合面板指示值的保险丝管,内部一只保险丝为:0.5A
6、 使用时尽可能用厂家随仪器提供的线缆以确保测量准确度。
7、 操作键盘
备用—————不用。
快测—————快速测量,无抗干扰功能。
抗扰—————抗干扰测量。
正接—————正接法测量。
打印—————在测试结果出来后,打印测试数据。
反接—————反接法测量。
起动—————起动高压,开始测量。
外接—————外接法测量。也用来选择外接标准电容的容量。
停止—————可以在测试过程中,中断测量。
测试前先用"试验电压"开关选好输出电压,然后用“操作键盘”选择好测试方式。仪器首先自检(显示屏、光电通讯、内存、操作键、数模转换、电网频率...),自检通过后,进入主目录。这时按屏幕提示即可完成测试。
进入测量状态后,用户随时可用“停止”键退出测量状态。
做正、反接测量时无须人工干预。
▲ 做外接方式测量时,中途会显示“请关闭外接高压!”并停一下,等候人工将外加高压关闭,关闭外高压后,(必须关闭外加高压),再按一次“起动”,键才能完成测试。
▲ ▲ 如果外高压未关闭,则测试结果不真实!
▲ ▲▲外接标准电容的容量选择:
“外接方式”时,每按一次“外接”键,则显示的外接标准电容容量“XXXXpF”将改变,共八种容量供选择(▲最后一种为厂家调试用,用户使用则无效。):50p F,100pF,150p F,200p
F,500p F,1000p
F,XXXpF,XXXpF。
应选择与外接标准电容相等的容量。如果使用的外接电容容量特殊,可请生产厂家将该电容容量输入仪器中。如果选择的外接标准电容与实际不相等,则测量结果会受影响。
正接线法:
通电前,先将“试验电压”开关置于“关”位置。将UH端子用专用线缆的大铁夹(有UH标记),接至被试品的高压端,将IX端子用另一根专用线缆的芯线线头(红色,有CX 标记)接被试品CX低压端,它的屏蔽线头(黑色,有E标记)接地,如果试品低压端有屏蔽端子,可用导线将该端子与“E”连接后接地。
通电后,按“正接”键。选好正接线方式:用“试验电压”开关选好电压:然后按“起动”键开始测试。
反接线法:
通电前,先将“试验电压”开关置于“关”位置,将UH端子接地,将IX的芯线(有CX标记)接至被试品CX的高端。
通电后,按“反接”键,选好反接线方式;用“试验电压”开关选好电压;然后按“起动”键开始测试。
▲ ▲▲特别注意:屏蔽“E”与IX电位接近,可接至被试品高压端的屏蔽或者悬空,绝对不能接地!!!。
▲ 外接高压法:
CB为外接标准电容,CX为被试品。
当被试品要求试验电压大于10KV时,可以外接高压进行测量,即不使用仪器内部高压变压器,而外接一台高压装置进行测量。
▲ 注意:外接高压法进行测量时,“试验电压”开关必须置于“关”位置!!!
▲ 外接高压法时,应外接标准电容器CB,不许使用仪器内标准电容器!!!
通电后,多次按“外接”键,选好外接线方式以及外接的标准电容容量,必须再将“试验电压”开关置于“关”位置!调整好外接电压,然后按“起动”键开始测试。
JSY-03型为中文液晶显示,有中文汉字提示各类测试信息。当测试完成后,可按“打印”键,打印测试结果。
六、 保管免费及免费修理期限
仪器应在原厂包装条件下,于室内贮存,其环境温度为0-40℃相对湿度为30%-70%,且在空气中不应含有足以引起腐蚀的有害物质。仪器从冷环境突然到热环境中时,可能有结露,应等结露消失后再使用。每年应打开仪器,清除由于野外作业产生的灰尘,特别是内部标准电容处的灰尘。
仪器和附件自制造厂发货日期起12个月内,当用户在完全遵守制造厂使用说明书所规定的保管的使用条件下,发现产品制造质量不良或不能正常工作时,制造厂负责给予修理或更换。
七、 仪器成套性
(1) 介质损耗测试仪 1台;
(2) 专用测试线缆 2根;
(3) 保险丝(5A) 4只;(0.5A) 2只;
(4) 电源线 1根;
(5) 使用说明书 1份;
(6) 产品合格证 1份;
附录:抗干扰探讨
(一)、干扰
以电容试品为例,当工频电压加在电容上时,其上流过两个电流(图A):容性电流Ic和阻性电流Ir,合成为试品电流Ix。Ic和Ir形成的夹角δ即为介质损耗角。当干扰电流Ig流入试品时,与Ix合成为Igx,Ix与Igx之间的夹角β是由干扰电流Ig形成的。测量到的电流Igx与Uc的夹角是β+δ与阶损角δ相差很大。
(二)、方法
目前,智能介质损耗仪通常采用的抗干扰方法主要有以下几种:
(1)移相法
方法是将加到试品上的测试电压Ur移相,使Uc与Ig同相位(Ur与Uc恒定相差90度),从图B中可见,测量到的电流Igx与有效的Ix相差不大(当干扰电流较小时),如果能再反Ig方向将Uc移相一次,两次数据合成即能准确地找到阶损角δ(即使干扰电流较大)。
(2)变频法
现场测量时通常使用工频电源,而现场干扰主要也是工频,同频率的电源相互叠加形成干扰,去除无用的干扰而保留有用测试电流是非常困难的。用非工频电源进行测量,则工频电源的干扰电流与测试电流由于频率不同,是很容易区分开的。比如,将所含有干扰混合信号的前10mS信号,与后10mS信号相加,就去除了工频干扰,而测量信号不是50Hz所以得以保留。
(3)波形分析法
计算机的运用,使大量的工程分析计算变得方便,通过对现场干扰的大量采集分析,结合测量到的波形,运用高等数学理论,巧妙地去除干扰,也同样达到目的。甚至去除一、三、五次谐波也很方便。
(三)要求
工程测量介质损耗,通常要求能分辨出0.1%介损值是不过分的。
介质损耗:tg(δ)=0.1%=0.001
损耗角度:δ=0.057°
对应时间:T=δ/360°×20mS=3.183μS
(四)比较
干扰信号是由干扰源通过媒介施加到试品上,即使干扰源是恒定的,但传输媒介是空气及其它绝缘体不是恒定介质(图C、图D),所以干扰电流Ig方向随机变化的程度≥0.057°不足为奇。要使测试电源随时跟踪Ig,而跟踪角度误差≤0.057°绝非易事。所以最终抗干扰虽然有效,但是测量精度不容易提高。
运行的设备(试品)在工频下运行,要求知道在工频条件下的介质损耗。
理论上:介质损耗=2πfRC,(f=50Hz)
所以用非工频的f'电源加在试品上所测得的介质损耗=2πf'RC,再由这一结果推算出2πfRC易如反掌。
然而运行设备的等效R,不是理想的电阻,其中更多的是有极分子,其等效R随频率f的变化而变化,所以尽管理论上介质损耗与频率成正比,而实际介质损耗(2πfRC)不与频率成正比。这给根据变频2πf'RC推算工频2πfRC造成了麻烦。
为了减小这个非线性误差,f'采用接近工频的频率,但过分接近等于没有变频,这就是主要矛盾。好在大多数试品对频率的敏感没有那么强烈。所以变频法抗干扰是比较成功的。
产生一个有一定的功率,且又是正弦波的异频电源有较大的难度。因为异频电源波形的失真度对相角的影响很大,或者与实际工频正弦波电源情况下所造成的介质损耗有误差。
为了去除接近f'工频干扰,变频法不得不处理大量的数据,所以相对测量时间较长。
(五)处理干扰的方法
测试电源采用工频,使测量与实际一样。交错分时测量干扰信号和综合信号,将所有测到的信号都地锁定在与测试电源同步的0相位上,再将干扰信号倒相与综合信号叠加得到有效信号。
在数字处理上,广泛地采用数字与电子技术,剔除了相角相差1%的信号,剔除了数值较大的几组信号,也剔除了数值较小的几组信号,再将许多组中值信号求平均值得出结果,而每组信号都是由许多测量信号与处理后的干扰信号构成的。在调试中所有数据都以6位有效数字计算。为了提高测量速度,采用双计算机和高速并行A/D转换器处理信息,软件全部用汇编完成。
对于强干扰信号较地测出其大小不难,仪器特别设计的高精度相位锁定器能将其准确地定相,为完全消除干扰提供了便利;对于弱干扰信号粗略地测出其大小也是可以的,而相位锁定器并不受测量信号的大小影响,仍然准确定相,弱干扰本来对测量信号的影响就小,再粗略地去除其大部分,也可以认为去除了干扰。
对于突发性干扰信号,仪器尽可能地将采样的干扰数据废除,或宣布测试失败,以保证数据结果的可靠性。
实验数据:用工频500V电压加载50pF电容,测量信号电流约8μA,无干扰时,快速测量测得介损为0.08%,抗干扰测量测得介损为0.08%;用20000V工频做干扰,距离被试品10厘米,快速测量测得介损为12.23%,抗干扰测量测得介损为0.09%.