地铁轨下垫板、轻轨橡胶垫板工厂
随着时间一点点的过去了,6师兄的心慢慢的更加沉重。弹条Ⅲ型扣件无螺栓无挡肩扣件,由弹条、预埋铁座、绝缘轨距块和橡胶垫板组成。适用于直线或半径≥350m的曲线,铺设60钢轨和Ⅲ型无挡肩混凝土轨枕的轨道。扣压力大、弹性好,取消挡肩,消除了轨距扩大,减小了件养护工作量。Ⅲ型弹条分开式扣件,秦沈线桥上板式轨道过渡段使用,单个弹条扣压力不小于11kN,轨面调高量±20mm,轨距调整量+8-4mm,预埋套管抗拨力100kN。弹条I性调高扣件由I型弹条、轨距挡板、挡板座、橡胶垫板、调高垫板及螺旋道钉组成。调高量为20mm,而普通弹条I型为8~10mm。弹条I型调高扣件只适用于60kg/m钢轨,弹条用A型。
侧向挡块,l简支梁(32m)上侧向挡块布置,侧向挡块设计分两种形式,其中,C型挡块为侧挡块,D型挡块为扣押型(压住底座板)。一 般在在每孔简支梁上设2对D型挡块,其余为C型挡块,C型与D型挡块总体上设置如图LB2-18所示。根据梁跨小同,,挡块设置间距有所区别,一般地段32m上为5.74m,24m梁上为5.18m,20m梁上为5.57m,连续梁上的挡块布置视结构不同而不同。摩擦板地段挡块间距一般为8m(C、D型交替布置)。临时端刺范围D型过渡挡块布置,根据全线无砟轨道及铺轨施工组特点,常规区地段的侧向挡块可安排在轨道板安装完成后施工。临时端刺范围内的侧向挡块应在早期安排(因与桥面无任何连接,易产生横向移位)。其中,曲线地段的临时端刺挡块应在底座板连接前设置临时(或过渡)侧向挡块。其中,C型挡块可直接按设计施工(先施工底座侧面郜分),D型挡块需设过渡型(以保证铺轨机械的通行需要),如图LB2-20所示。侧向挡块设置问距要求为:400m曲线半径段,≤3.26m。1 000mm曲线半径段,≤8.15m。1500m曲线半径段,≤l2.23m。2500mm曲线半径段,≤20.39m、4500m以上曲线半径段,≤32m。 侧向挡块施工前,应对桥上预埋套筒位置进行检查,要求内侧(靠近底座板一侧)预埋套筒中心(轴线)距底座板边缘距离为8~12cm,超过此范围要求的应进行整修。其整修基本原则是在内侧连接筋(与桥面的)设计位置(距底座板边缘lOcm)钻孔并清孔(强吹风),其后注人锚同胶并植入钢筋.侧向挡块外侧钢筋可保持现状不宜动,在此基础上,安装其他钢筋并根据交际情况进行适适当连接调整。
轨距块(绝缘块、尼龙轨距块、绝缘轨距块、轨距挡板、挡板座)轨距块是轨道扣件中连接件的一部分,是要承担调整轨距和绝缘钢轨与地面的电流连接作用。轨距块主要是由注塑机射出成型生产制成,材料主要是尼龙PA+玻璃纤维GF组成,也称改性增尼龙。轨距块的颜色取决于客户要求,在原料颗粒中加入一定的色粉便可生产出所需要的颜色。
2008年12月,为进一步确认WJ-8型扣件与CRTS II型轨道板的打磨工艺的匹配,京沪公司组织铁三院和铁科院对此进行了研讨。提出修改建议:保持CRTS II型轨道板的打磨工艺和打磨参数不变,使WJ-8型扣件与CRTS II型轨道板接口的接口设计尺寸完全一致,将WJ-8型扣件与Vossloh 300型扣件设计标高一致,将钢轨高低调整范围由0~+30 mm调整为-4~+26 mm鉴于京津城际铁路轨道精调时,为满足轨距±1mm的铺设精度,需更换价格较高的轨距挡板,调整费用较大,对扣件的轨距调整方式也进行相应优化。为确保京沪高速铁路轨道的铺设精度,对WJ-8型扣件进行修改设计,修改设计原则,1)依据部颁技术条件,满足其相应规定。《客运专线扣件系统暂行技术条件》(铁科技函[2006]248号)2)保持原有结构、大部分部件及其特征基本不变,针对京沪高速铁路的运营条件和线路条件,在CRTS II型轨道板的承轨槽几何形状和尺寸及其打磨程序和工艺不作任何改变的情况下,进行相应的匹配修改设计。3)结合前期现场铺设和安装经验,作局部优化。为与原WJ-8型(含WJ-8A、WJ-8B)扣件有所区分,避免混淆,将修改后的扣件系统命名为WJ-8C型扣件系统。适用范围,1)扣件系统适用运营条件:最高速度350 km/h客运专线,轴重170kN考虑轴重可能增加10%)。2)扣件系统适用线路条件:CRTS II型板式无砟轨道结构。主要修改方案: 1)与CRTS II型轨道板接口完全统一。微调各接口尺寸,使扣件与CRTS II型轨道板接口完全一致,重点调整了两承轨槽外侧挡肩测定点间距的测定位置及对应尺寸,并将钢轨轨顶面到承轨台表面的高度由208 mm调整为210 mm,消除对轨道板打磨参数调整的担心。2)修改钢轨高低位置调整方式。将钢轨高低位置调整范围由0~+30 mm调整为-4~+26 mm。3)修改钢轨左右位置(轨距)调整方式。
碳纳米弹簧,碳纳米管弹簧直径可以达上百微米,而长度可以达几厘米,其纺丝结构具有广阔的应用前景,有望应用于可伸缩导体、柔性电极、微型应变传感器、超级电容器、集成电路、太阳能电池、场发射源、能量耗散纤维等领域,为制备出肉眼可见的碳纳米管电子器件提供了可能,还有望应用于医疗器械,比如拉力传感绷带等。这种新型结构还可以发展成具有多功能的碳纳米管纤维复合材料加以利用。地铁轨下垫板、轻轨橡胶垫板工厂