我国建筑业迎来绿色发展的新时代,微合金化高强钢筋将追求功能化,即向抗震、耐腐蚀、耐低温、耐火方向发展。尤其是近几年,我国地震频发,建筑物的抗震性能成为建筑设计中的重要内容,中国汶川、玉树地震,以及海地、智利、日本地震发生后,建筑物的抗震性能进一步引起了社会各界的关注。
抗震建筑结构要求使用具有抗震性能的钢筋,即在建筑物受到地震波冲击时,可延缓建筑物断裂发生的时间,避免建筑物在瞬间整体倒塌,从而提高建筑物的抗震性能。因此在抗震结构中,要求钢筋有一个较长的屈服平台,有很好的延性,同时钢筋实际屈服强度相对于屈服强度标准值不宜过高。
对抗震钢筋提出了明确的指标要求。首先,抗震钢筋需要有高强度。欧洲标准明确指出抗震钢筋强度要达到400MPa、500MPa级别。其次,对钢筋的塑性指标提出了更高要求,包括强屈比大于1.25、均匀伸长率大于10%。再次,要求钢筋性能的一致性,即要求屈服点波动范围窄,实际屈服点与指标值之比小于1.30。
参照国外标准,我国《钢筋混凝土用热轧带肋钢筋》GB1499.2-2007标准明确地提出了抗震钢筋的要求。即与普通钢筋相比,抗震钢筋的性能指标增加了强屈比(R0m/R0eL)、屈标比(R0m/ReL)、力总伸长率(均匀伸长率)(Agt)三项质量特征值,即R0m/R0eL≤1.25,R0m/ReL≤1.30,Agt≥9%。如果抗震钢筋具有较高的强度和良好的塑韧性,那么就可以使钢筋从变形到断裂的时间间隔变长,有效达到“建筑结构发生变形到倒塌的时间间隔尽可能延长”“牺牲局部保整体”的抗震设计目的。
另外,由于钢材在强烈的地震作用下的高应变低周期疲劳性能和在静载下的性能是不同的,必须根据钢材在强震作用下的应力变形特征,提出抗震钢的性能指标。这些指标应包括高应变低周期疲劳性能、应变时效敏感性、冷脆转变温度、可焊接性、强度与塑性的配合。
近年来,在许多高层钢筋混凝土结构和钢混结构的设计中,均加大了抗高烈度地震的要求。地震中钢筋受到反复拉压的强力作用,必然产生变形,建筑楼层间的位移角可达到1/650~1/800,因此要求钢筋应具有对地震能量的吸收潜力。这一潜力往往以钢筋所受的应力、应变和持续时间三者的乘积来表征。其乘积值越大,表明钢筋对地震能量的吸收能力越强。
我国GB1499.2-2007规定抗震钢筋按屈服强度特征值分为355MPa、400MPa、500MPa级别(牌号分别为HRB335E、HRB400E、HRB500E),400MPa、500MPa强度级别为高强抗震钢筋,具有强度高、安全储备量大、节省钢材用量、施工方便等优越性,更适用于高层、大跨度和抗震建筑结构,是一种更节约、更高效的新型建筑材料。目前,在我国已修订完成的GB1499.2-2013中,335MPa强度级别尺寸规格限制为ф14mm以下,并增加了600MPa强度级别钢筋。
为了保证HRB400E、HRB500E抗震钢筋具有较为稳定的力学性能和组织形态,钢铁企业生产工艺中的化学成分设计要考虑两个方面:一方面是常规元素含量,另一方面是微合金元素含量。
在微合金元素的利用上,目前通常采用Ti(钛)、Nb(铌)、V(钒)元素,这些元素对C(碳)、N(氮)都具有很强的亲和力,可以形成碳氮化物。这些微合金碳氮化合物在轧制过程中析出,产生沉淀强化作用,使钢的强度提高。同时,这些碳氮化合物在铁素体基体、晶界、位错线上析出,可有效阻止铁素体晶粒的长大,起到细化晶粒的作用。再加上这些元素的固溶强化作用,就可以显著提高钢的强度。相比之下,Nb在沉淀强化及细化铁素体晶粒方面的作用更强一些。