铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 左移 右移删除 左移 右移删除 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 | |||
| |||
纯铝:1A99 1A97 1A95 1A931A90 1A85 1A80 1A80A 1070 1070A 1370 A1060 1050 1050A 1A50 1350 1145 1350 1A30 1160 1200 1235 2系列:2A01 2A02 2A04 2A06 2A10 2A11 2B11 2A12 2A13 2A14 2A16 2B16 2A17 2A20 2A21 2A25 2A49 2A50 2A70 2A80 2A90 2004 2011 2014 2014A 2214 2017 2017A 2177 2218 2618 2219 2024 2124 3系列:3A21 3003 3103 3004 3005 3105 4系列:4A03 4A11 4A13 4A17 4004 4032 4043 4043A 4047 4047A 5系列:5A01 5A02 5A03 5A05 5A06 5B06 5A12 5A30 5A33 5A41 5A42 5A66 50055019 5050 5251 5052 5154 5154A 5454 5154A 5754 5056 5356 5456 5082 5182 5086 6系列:6A02 6B02 6A51 6101 6101A 6005 6005A 6351 6060 6061 6063 6063A 6070 6181 6082 7系列:7A01 7A03 7A04 7A05 7A09 7A10 7A15 7A19 7A31 7A33 7A52 7003 7005 7020 7022 7050 7075 7475 8A06 8011 8090 |