CS030A S-Cu-5铜合金深冲性能好
CuZn10(CW501L)、CuZn15(CW502L)、CuZn20(CW503L)、CuZn30(CW505L)、CuZn33(CW506L)、CuZn36(CW507L)、CuZn37(CW508L)、CuZn40(CW509L)、CuZn35Pb1(CW600N)、CuZn35Pb2(CW601N)、CuZn36Pb2As(CW602N)、CuZn36Pb3(CW603N)、CuZn37Pb0.5(CW604N)、CuZn37Pb1(CW605N)、CuZn37Pb2(CW606N)、CuZn38Pb1(CW607N)、CuZn38Pb2(CW608N)、CuZn38Pb4(CW609N)、CuZn39Pb0.5(CW610N)、CuZn39Pb1(CW611N)、CuZn39Pb2(CW612N)、CuZn39Pb2Sn(CW613N)、CuZn39Pb3(CW614N)、CuZn39Pb3Sn(CW615N)、CuZn40Pb1Al(CW616N)、CuZn40Pb2(CW617N)、
CuZn40Pb2Al(CW618N)、CuZn40Pb2Sn(CW619N)、CuZn41Pb1Al(CW620N)、
CuZn42PbAl(CW621N)、CuZn43Pb1Al(CW622N)、CuZn43Pb2(CW623N)、
CuZn43Pb2Al(CW624N)、CuZn13Al1Ni1Si1(CW700R)、CuZn19Sn(CW701R)、
CuZn20Al2As(CW702R)、CuZn23Al3Co(CW703R)、CuZn23Al6Mn4Fe3Pb(CW704R)、
CuZn25Al5Fe2Mn2Pb(CW705R)、CuZn28Sn1As(CW706R)、CuZn30As(CW707R)、
CuZn31Si1(CW708R)、CuZn32Pb2AsFeSi(CW709R)、
与未微合金化锰黄铜相比,锆微合金化锰黄铜具有更好的耐腐蚀性能、摩擦性能和力学性能。其机理讨论如下。
(1) 锆在铜中的固溶度很小,可形成ZrCu5或ZrCu 强化相,大量强化相可成为后续形核的质心,阻碍再结晶和晶粒长大,起到细化晶粒的作用。众多弥散分布的κ 相以及细化的α 相综合提高了合金的硬度。
(2) 锆元素加入铜中,一方面提高了合金的自腐蚀电位,降低了合金的耐蚀倾向。另一方面,细化了晶粒组织,使晶界增多,降低了腐蚀扩张的速率,阻碍了腐蚀贯通通道的形成。
(3) 锰黄铜内众多弥散分布的软基体相和硬质点易于驻留液态介质,起到一定的减磨作用。硬度的提高在一定程度上也会提高合金的摩擦性能。
(4) 锆微合金化锰黄铜力学性能提高有以下两点原因:
①锆的加入细化了合金组织,具有较大的弥散强化作用;
②晶粒细化、晶界增多,并且合金在凝固过程中产生了大量的位错,从而产生很大的形变强化效果
普通黄铜是铜锌二元合金,其含锌量变化范围较大,因此其室温组织也有很大不同。根据Cu-Zn二元状态图,黄铜的室温组织有三种:含锌量在35%以下的黄铜,室温下的显微组织由单相的α固溶体组成,称为α黄铜;含锌量在36%~46%范围内的黄铜,室温下的显微组织由(α+β)两相组成,称为(α+β)黄铜(两相黄铜);含锌量超过46%~50%的黄铜,室温下的显微组织仅由β相组成,称为β黄铜。
压力加工性能
通过未合金化和锆微合金化锰黄铜在室温3.5%NaCl 溶液中的动电位很化曲线。以及自腐蚀电位、腐蚀电流密度和腐蚀速率数值。可以看出,二者都发生了钝化,但是锆微合金化锰黄铜的钝化电流密度更大。可以看出,锆微合金化锰黄铜的自腐蚀电位比未微合金化的高,说明前者的腐蚀倾向更低。可能是由于锰黄铜中的κ 相(富铁相)发生了剥落,留下了自腐蚀电位较正的α 相即富铜相,在锆微合金化锰黄铜中的α相更细,数量更多,从而使自腐蚀电位发生了正移。
采用传统Tafel 拟合计算得出腐蚀速率。与未微合金化的锰黄铜相比,锆微合金化的锰黄铜腐蚀速率降低了74.5%,说明其电化学耐蚀性更好。
摩擦磨损性能
通过锰黄铜在室温下的湿摩擦系数随磨损时间变化曲线可以看出,未合金化和锆微合金化的湿摩擦系数变动幅度均较小,都有较优的耐磨性能。但是锆微合金化的锰黄铜具有更低的平均摩擦系数 ,与未合金化的锰黄铜(0.0315)相比降低了19.3%。
通过锰黄铜的磨痕形貌可以看出,摩擦后的表面特征有如下几点:
①沿滑动方向上存在着明显的犁沟,犁沟深且多;
②犁沟旁边均出现了部分承载面。说明该区域在摩擦力的作用下发生了塑性变形,但没有发现裂纹,表明无脆性断裂现象 [3] 。
力学性能
通过铸态锰黄铜的拉伸性能可以看出,微量元素锆的加入,使锰黄铜的抗拉强度提高5.5%,屈服强度提高了24.2%,但是伸长率降低了6.5%。这是由于锆在锰黄铜中起到细晶强化的作用,而位错增强导致了合金塑性降低,伸长率也会相应的减小。
通过锰黄铜的断口形貌可以看出,未合金化的锰黄铜断口韧窝尺寸相对较大。添加了微量元素锆后断口组织比较细小,且韧窝尺寸及分布都比较均匀,显示出明显的韧性断裂特征。但是微合金化锰黄铜断口中还有明显粗大κ 相的断裂痕迹,这也是微孔长大聚合速度加快,合金强度提高不大、伸长率下降的主要原因。
锆微锰黄铜性能