普通PTC元件系列
PTC元件又称为PTC热敏电阻陶瓷,它是一类具有正的温度系数的半导体功能陶瓷.PTC在转变温度之前,电阻随温度的升高而下降,温度从转变温度到热失控温度之间,电阻随温度的升高而显著增长,PTC元件具有恒温发热、自然寿命长、节能、无明火、安全性能好、发热量容易调节及受电源电压影响小等一系列传统电热元件所无法比拟的优点.现在 PTC元件已广泛应用于家用电器、电力设施、电子设备以及汽车行业等众多领域.
PTC陶瓷发热元件可根据需要制作成各种形状和不同规格.常见的有圆片、长方形、长条形.
什么是PTC?
PTC目前已经广泛的被应用在电子行业的各个领域,那什么是PTC呢?它是怎样工作的呢?
PTC是一种半导体发热陶瓷,当外界温度降低,PTC的电阻值随之减小,发热量反而会相应增加。
PTC的工作原理
PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高.PTC热敏电阻本体温度的变化可以由流过PTC热敏电阻的电流来获得,也可以由外界输入热量或者这二者的叠加来获得. 陶瓷材料通常用作高电阻的优良绝缘体,而陶瓷PTC热敏电阻是以钛酸钡为基, 掺杂其它的多晶陶瓷材料制造的,具有较低的电阻及半导特性.通过有目的的掺杂一种化学价较高的材料作为晶体的点阵元来达到的:在晶格中钡离子或钛酸盐离子的一部分被较高价的离子所替代,因而得到了一定数量产生导电性的自由电子.
对于PTC热敏电阻效应,也就是电阻值阶跃增高的原因,在于材料组织是由许多小的微晶构成的 , 在晶粒的界面上,即所谓的晶粒边界(晶界)上形成势垒,阻碍电子越界进入到相邻区域中去, 因此而产生高的电阻.这种效应在温度低时被抵消:在晶界上高的介电常数和自发的极化强度在低温时阻碍了势垒的形成并使电子可以自由地流动.而这种效应在高温时,介电常数和极化强度大幅度地降低, 导致势垒及电阻大幅度地增高,呈现出强烈的PTC效应.
PTC热敏电阻是开发早、种类多、发展较成熟的敏感元器件.PTC热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: σ=q(nμn+pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.
热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.PTC热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.