LLDPE简介
线性低密度聚乙烯( Linear Low Density Polyethylene ),英文缩写为LLDPE。线性低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。LLDPE的线性度取决于LLDPE和LDPE的不同生产加工过程。LLDPE通常在更低温度和压力下,由乙烯和高级的a烯烃如丁烯、己烯或辛烯共聚合而生成。共聚过程生成的LLDPE聚合物具有比一般LDPE更窄的分子量分布,同时具有线性结构使其有着不同的流变特性。线性低密度聚乙烯(LLDPE),是乙烯与少量高级α-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于0.915~0.940克/立方厘米之间。但按ASTM 的D-1248-84规定,0.926~0.940克/立方厘米的密度范围属中密度聚乙烯(MDPE)。新一代LLDPE将其密度扩大至塑性体(0.890~0.915克/立方厘米)和弹性体(<0.890克/立方厘米)。但美国塑料工业协会(SPI)和美国塑料工业委员会(APC)只将LLDPE的范围扩大至塑性体,不包括弹性体。上世纪80年代,union Carbide和Dow Chemical公司将其早期销售的塑性体和弹性体称之为非常低密度的聚乙烯(VLDPE)和超低密度聚乙烯(ULDPE)树脂。
通常,LLDPE树脂用密度和熔体指数来表征。密度由聚合物链中共聚单体的浓度决定。共聚单体的浓度决定了聚合物中的短支链量。短支链的长度则取决于共聚单体的类型。共聚单体浓度越高,树脂的密度越低。此外,熔体指数是树脂平均分子量的反映,主要由反应温度(溶液法)和加入链转移剂(气相法)来决定。平均分子量与分子量分布无关,后者主要受催化剂类型影响。
LLDPE在20世纪70年代由union Carbide公司工业化,它代表了聚乙烯催化剂和工艺技术的重大变革,使聚乙烯的产品范围显著扩大。LLDPE用配位催化剂代替自由基引发剂,以及用较低成本的低压气相聚合取代成本较高的高压反应器,在比较短的时间内,便以其优异的性能和较低的成本,在许多领域已替代了LDPE。
生产和特性
LLDPE的生产起始于过渡金属催化剂,特别是齐格勒(Ziegler)或飞利浦(Phillips)类型。基于环烯烃金属衍生物催化剂的新工艺是LLDPE生产的另一个选择方案。实际的聚合反应可以在溶液和气相反应器中进行。
通常,辛烯与乙烯在溶液相反应器中共聚,丁烯。己烯与乙烯在气相反应器中聚合。在气相反应器中生成的LLDPE树脂是颗粒形式,且可以粉料或进一步加工成粒料出售。以己烯和辛烯为基础的新一代超LLDPE已由莫比尔、联合碳化物、Novacor和道塑料等公司推出。这些材料具有很大的韧性极限,在自动取出袋的应用中有新的潜力。很低密度PE树脂(密度低于0.910g/cc。)也在近年出现。
VLDPES具有的柔性且软度是LLDPE达不到的。树脂的特性一般体现在熔融指数和密度。熔融指数可反映出树脂的平均分子量且主要受反应温度控制。平均分子量与分子量分布(MWD)无关。催化剂选择影响MWD。
密度由共聚用单体在聚乙烯链中的浓度决定。共聚用单体浓度控制短支链数目(其长度取决于共聚用单体类型)从而控制树脂密度。共聚用单体浓度越高,树脂密度越低。在结构上,LLDPE在支链的数目和类型上与LDPE不同,高压LDPE有长支链,而线性LDPE只具有短支链。
在结构上,LLDPE只在短支链数目上与HDPE不同。HDPE的短支链数目较少,因此,是有更高密度的材料。LLDPE的物理特性受控于它的分子量,MWD和密度。LLDPE优于LDPE,归根结底取决其用途。通常,在所有应用中用LLDPE生产刚性更强的产品,虽然根据ATSM对低密度材料标准,LLDPE和LDPE的密度都在0.91—0.925之间。LLDPE形成更高结晶结构,因为不存在长支链。LLDPE较大的结晶性产生较高刚性的产品。这种较高的结晶度也使LLDPE与LDPE相比,熔点提高了 10~15℃。更高的抗伸强度、抗穿透性、抗撕裂性和伸长率增加是LLDPE的特性,使其特别适用于制薄膜。如果用己烯或辛烯代替丁烯作共聚单体甚至连抗冲击力和抗撕裂性也可得到较大的改进。对于相同熔体指数和密度下的给定树脂,己烯和辛烯LLDPE树脂在冲击和撕裂性能上提高到 300%。己烯和辛烯树脂更长的侧链在链之间起到象“绳结”分子一样的作用,改进了化合物的韧性。用环烯烃金属衍生物催化剂生产树脂将具有独特的性能。更窄的MWD,改进了共聚单体分布,有更好的薄膜透明度、密封性和冲击强度,这些与用齐格勒催化剂生产的LLDPE相似。在透明度这一特性上,LLDPE具有与LDPE相似的缺点O LLDPE薄膜的浊度和光泽度是不好的,主要因为它的更高结晶性造成了薄膜表面粗糙度。LLDPE树脂的透明度可通过与少量的LDPE共混而改善。
分类
统计
按共聚单体类型,LLDPE主要划分为3种共聚物:C4(丁烯-1)、C6(己烯-1)和C8(辛烯-1)。其中,丁烯共聚物是全球生产量最大的LLDPE树脂,而己烯共聚物则是目前增长最快的LLDPE品种。在LLDPE树脂中,共聚单体的典型用量为5%~10%重量分数,平均用量大约为7%。茂金属基的LLDPE塑性体(mLLDPE)具有传统LLDPE 3倍多的平均共聚单体含量。图表1显示的是引用自外刊的10年间世界3种共聚单体LLDPE的产量
在1984年末,当时的联碳公司引入了己烯共聚LLDPE的生产,紧随其后的是Exxon、Mobil等公司。Dow Chemical(陶氏化学公司)在其低压溶液工艺中几乎全部采用辛烯作为共聚单体,加拿大NOVA(诺瓦化工)也在其中压溶液工艺中大部分采用辛烯。辛烯共聚LLDPE树脂具有略好的强度、抗撕裂性能和加工性能,而己烯共聚和辛烯共聚树脂的性能差别不大。目前己烯LLDPE树脂的生产商主要有ExxonMobil Chemical(埃克森美孚化工公司)、Eastman Chemical(伊士曼化学公司)、Equistar(等星公司)和Chevron Phillips(雪佛龙菲利普斯化学公司)等。此外,Dow Chemical(陶氏化学公司)、Basell(巴塞尔公司)、Innovene(亿诺公司)、Samsung Total(三星道达尔公司)等也生产己烯LLDPE。
与通常使用的丁烯共聚单体相比,以己烯和辛烯作为共聚单体生产的LLDPE具有更为优良的性能。LLDPE树脂的最大用途在于薄膜的生产,以长链α-烯烃(如己烯、辛烯)作为共聚单体生产的LLDPE树脂制成的薄膜及制品在拉伸强度、冲击强度、撕裂强度、耐穿刺性、耐环境应力开裂性等许多方面均优于用丁烯作为共聚单体生产的LLDPE树脂。自20世纪90年代以来,国外的PE生产厂商及用户均趋向于用己烯及辛烯替代丁烯。据悉,用辛烯作共聚单体,树脂性能不一定能比己烯共聚有更进一步的改善,且价格反而贵些,因此目前国外主要LLDPE生产商使用己烯来替代丁烯的趋势更为明显。
目前,由于国内尚无大规模生产己烯、辛烯,且进口价格较贵,因此,现今国内生产的LLDPE树脂主要用丁烯作为共聚单体。国内有些企业在引进LLDPE生产装置时虽有用己烯作共聚单体的牌号,但终因国内无己烯生产而不得不放弃,仅在开车考核时进口少量己烯。我国进口的高档LLDPE多为此类产品。预计今后对以1-己烯为单体的LLDPE需求将有较大增长
线性低密度聚乙烯生产工艺种类和工艺流程
LLDPE的工艺种类
聚乙烯的生产方法主要有4种:高压法、气相法、溶液法和淤浆法。但目前,世界上生产LLDPE树脂通常采用气相法和溶液法工艺。
工艺流程
生产LLDPE的工艺流程有多种,现主要介绍气相法和溶液法中两种主要的工艺流程。
1.美国联碳公司(UCC)的Unipol气相法工艺。
该工艺与BP气相法工艺大同小异,但UCC产品范围较广,品种较多,采用4种不同的催化剂生产全密度范围分子量分布由窄到宽、熔体指数由0.91g/10min~125g/10min的各种树脂。在各种工艺中,UCC气相法产品范围最广。BP工艺采用一种催化剂生产全密度聚乙烯,熔体指数由0.35/10min~30g/10min,分子量分布窄,当生产宽分子量分布的牌号时,要在挤压造粒时加助剂,但牌号较少。
2. 加拿大杜邦中压溶液法(Sclairtech)工艺流程。
该工艺是溶液法中生产能力最大、发展最快的一种。1960年杜邦公司在加拿大沙尼亚建立第一套11kt/a的装置,至1990年后,采用该工艺的生产能力已达到720kt/a~780kt/a,其中最大的反应器生产能力为300kt/a。
(1)聚合 乙烯升压后与净化过的循环共聚单体及溶剂(环己烷)一起进入冷却吸收器,在降温的同时充分混合溶解,用进料泵加压达到反应压力10.79~16.67Mpa(110~170kgf/cm2),经温度控制系统达到反应温度(100~300℃),用加入的齐格勒型催化剂的量来控制乙烯转化率达95%左右,用氢来调节熔体指数。用共聚单体量调节聚乙烯密度。采用2个(或更多)反应器,在不同温度和不同氢加入点条件下操作调节产品分子量分布。
在反应器出口加入脱活剂以终止反应,然后使反应物流升温到300℃,通过Al2O3吸附剂吸附脱除催化剂残渣;如采用改进后的新催化剂体系(ACS)则可免去脱催化剂的设施。然后,反应物料进入中压闪蒸器脱除反应乙烯、共聚单体和大部分溶剂。
(2)后处理 熔体脱除单体、溶剂等易挥发物后与固体添加剂混合,进入挤压机和切料机,粒料被循环水带出,脱水后再用热水配成浆液,进一步洗出树脂中的溶剂,然后树脂进入汽提机,经蒸汽逆流汽提后,残留溶剂量小于500mg/L,再进一步干燥,并用热空气送到掺混料仓和包装工序。
(3)溶剂回收 从中压和低压闪蒸器顶部脱出的乙烯、共聚单体和环己烷分别经
一、二段冷凝器进入低沸塔,低沸塔顶物料再依次经过乙烯塔和共聚单体塔回收乙烯和共聚单体,低沸塔底物料送到高沸塔和树脂汽提塔处理,从高沸塔顶回收环己烷,从树脂汽提塔底排出油脂状低聚合】物。补充的共聚单体键入共聚单体塔,从该塔侧线还排出异构物2-丁烯。(MED分子量分布)
加工应用
LDPE和LLDPE都具有极好的流变性或熔融流动性。LLDPE有更小的剪切敏感性,因为它具有窄分子量分布和短支链。在剪切过程中(例如挤塑),LLDPE保持了更大的粘度,因而比相同熔融指数的LDPE难于加工。在挤塑中,LLDPE更低的剪切敏感性使聚合物分子链的应力松弛更快,并且由此物理性质对吹胀比改变的敏感性减校在熔体延伸中,LLDPE在各种应变速率下通常都具有较低的粘度。也就是说它将不会象LDPE一样在拉伸时产生应变硬化。随聚乙烯的形变率增加.LDPE显示出粘度的惊人增加,这是由分子链缠结引起。这种现象在 LLDPE中观察不出,因为在LLDPE中缺少长支链使聚合物不缠结。这种性能对薄膜应用极重要.因为 LLDPE薄膜在保持高强度和韧性下召易制更薄薄膜。
LLDPE的流变性可概括为“剪切时刚性”和“延伸时柔软”。
当用LLDPE替代LDPE时薄膜挤塑设备和条件必须做修改。LLDPE的高粘度要求挤塑机有更大的功率.并提供更高的熔体温度和压力。模口隙距必须加宽以避免由于产生高背压和熔体断裂而降低产量。
LDPE和 LLDPE的一般模口隙距尺寸分别是O. 024~0. 040 in.和 0. 060-0. 10in。
LLDPE的“延伸时柔软”的特性在吹膜过程中是一个缺点。LLDPE的吹塑薄膜膜泡不象 LDPE的那么稳定。
一般的单唇风环对 LDPE的稳定足够使用.LLDPE的特有的膜泡要求更完善的双唇风环来稳定。用双唇风环冷却内部膜泡可增加膜泡稳定性,同时在高生产率下提高薄膜生产能力。除了膜泡的更好冷却外,很多薄膜生产厂采用与LDPE共混方法以增强LLDPE溶道理上,LLDPE的挤塑可以在现有LDPE薄膜设备上完成,当LDPE的共混物中 LLDPE的浓度达 50%时。加工 100% LLDPE或富含LLDPE的与LDPE共混材料时,采用一般的LDPE挤塑机,必需改进设备。根据挤塑机的寿命,要求改进的可能是加宽模口隙距,改良风环,修改螺杆设计以更好挤出,必要时应增加电机功率和转矩。对于注塑应用,一般不需改进设备,但加工条件需达最佳化。
滚塑加工要求LLDPE研磨成均匀颗粒(35筛孔)。加工过程包括用粉末状LLDPE填满模具,加热并双轴向地旋转模具使LLDPE均匀分布。冷却后产品从模具中移出。
应用领域
LLDPE已渗透到聚乙烯的大多数传统市场,包括薄膜、模塑、管材和电线电缆。防渗漏地膜是新开发的LLDPE市场地膜,一种大型挤出片材,用作废渣填埋和废物池衬垫,防止渗漏或污染周围地区。LLDPE的一些薄膜市场,例如生产袋子、垃圾袋、弹性包装物、工业用衬套、巾式衬套和购物袋,这些都是利用改进强度和韧性后这种树脂的优点。透明薄膜,例如面包袋,一直由LDPE占统治地位,因为它有更好的浊度。然而,LLDPE与LDPE的共混物将改进强度、抗穿透性和LDPE薄膜的刚度,而不显著影响薄膜的透明度。注塑和滚塑是LLDPE最大的两个模塑应用。这种树脂优越的韧性和低温、冲击强度理论上适于废物箱、玩具和冷藏器具。另外,LLDPE的高抗环境应力开裂性使其适用于注塑与油类食品接触的模塑盖子,滚塑废料容器、燃料箱和化学品槽罐。在管材和电线电缆涂敷层中应用的市场较小,在这里LLDPE提供的高破裂强度和抗环境应力开裂性可满足要求。目前,LLDPE的 65%-70%用于制作薄膜