印染废水概述
印染行业是纺织工业用水量较大的行业,水作为媒介参与整个染整加工过程。印染废水水量大,色度高,成分复杂,废水中含有染料、浆料、助剂、油剂、酸碱,纤维杂质及无机盐等,染料结构中硝基和胺基化合物及铜、铬、锌、砷等重金属元素具有较大的生物毒性,严重污染环境。
一、 印染废水的产生和特性分析
印染废水中的污染物主要来自织物纤维本身和加工过程使用的染化料,在印染生产的前处理过程中排出退浆废水、煮炼废水、漂白废水和丝光废水,染色印花过程排出染色废水、皂洗废水和印花废水,整理过程排出整理废水。
1. 前处理产生的废水
① 退浆废水 退浆是用化学药剂将织物上所带的浆料退除(被水解或酶分解为水溶性分解物),同时也除掉纤维本身的部分杂质。退浆废水是碱性有机废水,含有浆料分解物、纤维屑、酶等,其COD、BOD5都很高。退浆废水水量较少,但污染较重,是前处理废水有机污染物的主要来源。当采用淀粉浆料时,废水的BOD5含量约占印染废水的45%左右;当采用PVA或CMC化学浆料时,废水的BOD5下降,但COD很高,废水更难处理。PVA浆料是造成印染废水处理效果不好的主要原因之一。
② 煮炼废水 煮炼是用烧碱和表面活性剂等的水溶液,在高温(120℃)和碱性(pH=10~13)条件下,对棉织物进行煮炼,去除纤维所含的油脂、蜡质、果胶等杂质,以保证漂白和染整的加工质量。煮炼废水呈强碱性,含碱浓度约为0.3%,呈深褐色,BOD5和COD值较高。
③ 漂白废水 漂白是用次氯酸钠、双氧水、亚氯酸钠等氧化剂去除纤维表面和内部的有色杂质。漂白废水的特点是水量大,污染程度较轻,BOD5和COD均较低,属较清洁废水。
④ 丝光废水 丝光是将织物在氢氧化钠浓溶液中进行处理,以提高纤维的张力强度,增加纤维的表面光泽,降低织物的潜在收缩率和提高对染料的亲和力。丝光废水一般经蒸发浓缩后回收,由末端排出的少量丝光废水碱性较强。
2. 染色和印花废水
① 染色废水 染色废水主要污染物是染料和助剂。由于不同的纤维原料和产品需要使用不同的染料、助剂和染色方法,加上各种染料的上染率不同和染液的浓度不同,使染色废水水质变化很大。染色废水的色泽一般较深,且可生化性差。其COD一般为300~700mg/L,BOD5/COD一般小于0.2,色度可高达几千倍。
② 印花废水 印花废水主要来自配色调浆、印花滚筒、印花筛网的冲洗废水,以及印花后处理时的皂洗、水洗废水。由于印花色浆中的浆料量比染料量多几倍到几十倍,故印花废水中除染料、助剂外,还含有大量浆料,BOD5和COD都较高。
由于印花滚筒镀筒时使用重铬酸钾,滚筒剥铬时有三氧化铬产生。这些含铬的雕刻废水应单独处理。
③ 整理废水 整理废水含有树脂、甲醛、表面活性剂等。整理废水数量较小,对全厂混合废水的水质水量影响也小。
二、 印染废水水质及水量
1. 不同产品排放的废水水质
印染产品由于原料纤维、产品种类和生产工艺等不同,使用的染料、助剂种类和品种不同,加工的工艺方法不同,漂洗次数不同,因此其排放废水的水质亦不同。另外,由于不同化学纤维的含量在各类产品中所占的比重不同,其使用染料和助剂的种类也不断变化,因此所排放的废水中各污染物含水量也不相同。
2. 废水水量印染废水排放量约为全厂用水量的60%~80%。废水量随工厂的类型、生产工艺、机械设备、加工产品的品种不同,差异较大。根据国内外的资料估算,每加工一匹棉织物,用水量约为1~1.2m3。实际工程中,常需通过调研确定确切的设计排水量。
三、 印染废水的特点和危害
1. 废水的特点
① 水量大。
② 浓度高。大部分废水呈碱性,COD较高,色泽深。
③ 水质波动大。印染厂的生产工艺和所用染化料,随纺织品种类和管理水平的不同而异。而对于每个工厂,其产品都在不断变化,因此,废水的污染物成分浓度的变化与波动十分频繁。
④ 以有机物污染为主。除酸、碱外,废水中的大部分污染物是天然或合成有机物。
⑤ 处理难度较大。染料品种的变化以及化学浆料的大量使用,使废水含难生物降解的有机物,可生化性差。因此,印染废水是较难处理的工业废水之一。
⑥ 部分废水含有毒有害物质。如印花雕刻废水中含有六价铬,有些染料(如苯胺类染料)有较强的毒性。
2. 废水的危害
印染废水含大量的有机污染物,排入水体将消耗溶解氧,破坏水生态平衡,危及鱼类和其它水生生物的生存。沉于水底的有机物,会因厌氧分解而产生硫化氢等有害气体,恶化环境。
四、 印染废水处理的基本方法
印染废水是以有机污染为主的成分复杂的有机废水,处理的主要对象是BOD5、不易生物降解或生物降解速度缓慢的有机物、碱度、染料色素以及少量有毒物质。虽然印染废水的可生化性普遍较差,但除个别特殊的印染废水(如纯化纤织物染色)外,仍属可生物降解的有机废水。其处理方法以生物处理法为主,同时需辅以必要的预处理和物理化学深度处理法。
五、 各工艺运行情况对比表表1 各工艺运行情况
| 组合工艺处理费用(元/m3) | 处理水量 (m3/d) | 工程总投资 (万元) | 占地面积 m2 | 工程单位造价 (元/m2) | 单位总处理费用(元/m2) |
水解酸化—UASB—SBR[1] | 0.6-0.8 | 2000 | 240 | 1500-2500 | 1200 | 1.9 |
水解酸化—生物接触氧化[2] | 0.45 | 4800 |
|
|
|
|
活性污泥—接触氧化[3] | 0.79 | 700-1000 |
|
|
|
|
推流式曝气增氧活性污泥[4] | 0.95 | 1200 |
|
| 1100 | 2.05 |
涡凹气浮(CAF)-A/O工艺[5] | 1.93 | 500 |
| 715 | 1517.6 | 3.43 |
缺氧-好氧-压滤-富氧生物炭处理[6] | 0.7 | 2200 |
|
|
|
|
改良厌氧—生物接触氧化[7] | 1.85 | 400 |
|
|
|
|
水膜除尘-水解酸化-接触氧化[8] | 1.35 | 1000 |
|
|
|
|
混凝—生物膜曝气—氧化塘[9] |
| 4000 |
|
|
|
|
微电解-炉渣吸[10] | 0.41 | 148 | 30 |
| 2143 | 2.51 |
新型内电解铁屑过滤塔-生物接触氧化池[11] | 0.45 | 150 | 200 | 749 | 556 | 1 |
混凝—水解酸化—接触氧化[12] | 0.8 | 3840 |
|
|
|
|
接触氧化—电解[13] | 1.45 | 400 |
|
|
|
|
二级生物接触氧化-砂滤-活性生物炭[14] |
| 4000-5000 |
|
|
|
|
水解—混凝—复合生物池[15] | 1.10 | 4000 | 460 | 2500 | 1150 | 2.2 |
水解-接触氧化-气浮[16] | 1.56 | 4000 | 380 | 2400 | 950 | 2.51 |
水解—接触氧化—活性炭[17] | 2.25 | 1200 | 180 | 1000 | 1500 | 3.75 |