采用机电一体化设计实现预热、顶锻,整个焊接过程的最优化控制微处理器单片机控制,供电、供气严格按照对焊机所需求的焊接曲线完成焊接,且可按不同的焊接工艺要求设置不同的焊接和普通的对焊机相比,接头夹渣少,无假焊,金相好,牢固美观。广泛用于碳钢、合金钢有色金属管、型材之间的对焊或异种金属的对焊加压、导电、定位、焊接过程自动化完成缺压缺料自动保护输出电流大,对焊的截面积可达200m㎡可用于任意工作的对焊 电阻焊(resistance welding)是将被焊工件压紧于两电极之间,并施以电流,利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。 电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊,(见图)
电阻焊概述 电阻焊的种类很多,常用的有点焊、缝焊、对焊和凸焊三种。
一、点焊 点焊是将焊件装配成搭接接头,并压紧在两柱状电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊主要用于薄板焊接。
1、点焊的工艺过程:
(1)、预压,保证工件接触良好。
(2)、通电,使焊接处形成熔核及塑性环。
(3)、断电锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。
2、点焊方法分类
(1)、双面单点焊:通常焊机均采用此方案
(2)、单面单点焊:零件的一侧电极可达性很差,或零件较大,二次回路较长时采用此方案
(3)、单点双点焊
(4)、双面双点焊
(5)、多点焊3、点焊的主要形式
(1)、电子脉冲式:常用于低碳钢、不锈钢等敏感性能差的材料
(2)、电容储能式:主要用于热时间短的、很小的超薄板及有色金属,也用于厚薄差较大的板材
二、缝焊 缝焊的过程与点焊相似,只是以旋转的圆盘状滚轮电极代替柱状电极,将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。 缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。
三、对焊 对焊是将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法,电阻对焊主要用于截面简单、直径或边长小于20mm和强度要求不太高的焊件。
四、凸焊凸焊是点焊的一种变型形式;在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。与点焊相比提高了单位面积上电极压力和焊接电流,有利于板件表面氧化膜的破裂与热量集中,减少分流,可用于厚度达到1:6的零件焊接。 电阻焊的优点1、熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
2、加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
3、不需要焊丝、焊条等填充金属,以及氧、乙炔、氢等焊接材料,焊接成本低。
4、操作简单,易于实现机械化和自动化,改善了劳动条件。
5、生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。但闪光对焊因有火花喷溅,需要隔离。 电阻焊的缺点1、目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
2、点、缝焊的搭接接头不仅增加了构件的重量,且因在两板焊接熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。
3、设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的平衡运行。
我国电阻焊的应用现状 随着航空航天、电子、汽车、家用电器等工业的发展、电阻焊越加受到广泛的重视。同时,对电阻焊的质量也提出了更高的要求。可喜的是,我国微电子技术的发展和大功率可控硅、整流器的开发,给电阻焊技术的提高提供了条件。目前我国已生产了性能优良的次级整流焊机。由集成电路和微型计算机构成的控制箱已用于新焊机的配套和老焊机的改造。恒流、动态电阻,热膨胀等先进的闭环监控技术已开始在生产中推广应用。这一切都将有利于提高电阻焊质量,并扩大其应用领域。 电阻焊基本原理 焊接热的产生及影响产热的因素点焊时产生的热量由下式决定:Q =I″Rt (6-1) 式中Q——产生的热量(J)I″——焊接电流(A)的平方R——电极间电阻(Ω)t——焊接时间(s)1.电阻R及影响R的因素式(6-1)中的电极间电阻包括工件本身电阻R。,两工件间接触电阻R},电极与工作间接触电 阻R 点焊时的电阻R =2Rw,-l-Rc-I-2Rm (6-2)分布和电流线 当工件和电极已定时,工件的电阻取决于它的电阻率。因此,电阻率是被焊材料的重要性能。电阻率高的金属其导热性差(如不锈钢),电阻率低的金属其导热性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易。点焊时,前者可以用较小电流(几千安培),后者就必须用很大电流(几万安培)。