中央空调系统是具有系统强惯性、大滞后等特点,其过程要素之间存在着严重的非线性、大滞后及强耦合关系。对这样的系统,无论用经典的PID控制,还是现代控制理论的各种算法,都很难实现较好的控制效果。
中央空调运行节能控制系统(KT-CCS),以计算机、PLC、变频器、传感器等硬件为核心,应用解耦、模糊控制等现代控制技术和手段,集成了闭环控制技术、PID运算、模糊技术和人机整合技术,以中央空调系统主机变负荷运行为基点,对冷冻水循环、冷却水循环、冷却塔及新风处理等系统进行全面的优化调节,使中央空调系统运行在最佳状态,综合节能率大于25%。
一、控制系统的组成
KT-CCS系统由中央空调主机调节、冷冻水调节、冷却水调节、新风调节、数据采集等子系统组成。通过对中央空调系统运行参数的监测,结合室温和末端温度的变化,控制中央空调系统变负荷运行,达到保证制冷(热)质量、降低电能消耗的目的。
二、中央空调主机(冷水机组)调节子系统
KT-CCS的空调主机调节,由下列方法实现:
⑴ 在制冷(热)机组的冷量调节中,引入变频变容量调节技术。
⑵ 采用先进的制冷剂流量控制技术,精确控制蒸发温度。
⑶ 对于主机自身没有冷量调节功能的制冷(热)机组,采取多台压缩机分级制冷(热)和变频变容量调节技术。
⑷ 大型制冷(热)机组一般都具有冷量调节装置,制冷(热)机组的制冷(热)量可随冷负荷的要求而变化。制冷机组的冷量调节,除吸收式以外,均是在不改变制冷(热)工况的前提下,通过改变压缩机的输气量,进而改变供液量以调节蒸发器产冷量。
三、中央空调从动系统的节能调节
中央空调从动系统由冷冻水循环系统、冷却水循环系统及冷却塔风机系统等部分组成。
当制冷(热)机的负荷发生变化时,冷冻水、冷却水的需求量和冷却塔的冷却风量也将发生相应的变化。本系统采用变频调速技术来控制中央空调从动系统,通过改变泵类设备的转速(即改变流量),跟踪需求,更好地解决压差平衡,大大降低电能损耗。
四、数据采集及控制单元
根据动态过程特征识别,基于模糊控制理论自适应地调整运行参数,实现中央空调水系统真正意义上的变温差、变压差、变流量运行,使控制系统具有高度的跟随性和应变能力。
(1)对冷冻水循环系统的控制
数据采集及控制单元采用了模糊预测算法,当环境温度、空调末端负荷发生变化时,各路冷冻水供回水温度、温差、压差和流量亦随之变化,流量计、压差传感器和温度传感器将检测到的这些参数送至控制及数据处理单元,依据所采集的实时数据及系统的历史运行数据,实时预测计算出末端空调负荷所需的制冷(热)量,以及各路冷冻水供回水温度、温差、压差和流量的最佳值,并以此调节各变频器输出频率,控制冷冻水泵的转速,改变其流量,使冷冻水系统的供回水温度、温差、压差和流量运行在最优值。
KT-CCS系统对冷冻水系统采用了输出能量的动态控制,实现了空调主机冷媒流量跟随末端负荷的需求供应,使空调系统在各种负荷情况下,都能既保证末端用户的舒适性,又最大限度地节省了系统的能量消耗。
(2)对冷却水循环系统及冷却塔风量的控制
KT-CCS系统对中央空调冷却水及冷却塔风量的调节采用模糊优化的控制方法,当环境温度、空调末端负荷发生变化时,中央空调主机的负荷率将随之变化,系统的最佳转换效率也随之变化。控制单元在动态预测控制冷媒循环的前提下,依据所采集的空调系统实时数据及系统的历史运行数据,计算出冷却水最佳进、出口温度,并与检测到的实际温度进行比较,动态调节冷却水的流量和冷却塔风量,使系统转换效率逼进不同负荷状态下的最佳值,保证中央空调系统在各种负荷条件下,均处于最佳工作状态,从而实现中央空调系统能耗最大限度的降低。
五、应用效果
⑴ 运行安全、稳定、可靠,功能指标达到设备技术要求。
⑵ 直观显示运行参数、及时准确地自动跟踪末端空调负荷运行。
⑶ 实现空调泵组的软启动、软停止,运行平滑稳定,改善了设备的启停性能和运行磨损。
⑷
具有强大的管理功能和安全保护功能,确保整个系统优化、安全运行。
⑸ 综合节电率达25%以上。
该控制系统与冰蓄冷、太阳能空调节能技术结合一体,减排降耗效能更加强大,综合节电率可达40%以上。