PaulKlipsch是一个声学科学家,对于号角的研究更是倾尽心力,当然会利用科学的实验数据来证明号角的好处。他的实验是这样子的:在无响室中拿出一个单元,并用扩大机对这个单元输入两个不同频率的正弦波讯号,然後分别利用频谱分析仪测试这个单元在发出相同音量的时候,加上号角与拿掉号角之後的各项差异。这个实验的结果发表在美国AES(Audio Engineering Society
)期刊上,由于加装号角之後的工作效率较高,因此发出相同音量的时候,有装号角的输出只需没装号角的几十分之一功率,因此各项谐波失真的比例便大大的降低。利用单元在低功率下工作以降低失真的原理,就好比现在大型喇叭系统,喜欢用多数的单元并联, 以求取每个单元较低的输出,是完全相同的道理。使用号角不必多个单元并联,只需一个单元即可,更是大大的降低了制造成本,这就是Paul Klipsch致身努力的目标。
10dB)和相位偏移。这也是以往的号角式喇叭声音不好的原因之一。
虽然知道了号角有增加效率以及降低失真的优点,不过号角的长度以及开口大小,密切关系著号角的声学特性。要详细说明号角展开时的数学方程式是非常艰深且困难的,因为需要运用到大量的指数式运算。对于吾辈一般用家而言只需了解号角计算的原理就行了。首先,号角开口的大小面积,影响著该号角能够产生的最低频率截止点。简单的说,就是号角的开口面积越大,低频就可以延伸得越低。这个数值大约多少呢?延伸至35Hz 3dB时的开口面积,大约是一个标准办公桌的桌面大;如果要设计一个可以延伸至28Hz的号角呢?它的开口面积大约要大到福特重载卡车的车头才够!