深松铲 (a)平面凿形(b)圆脊形(c)带打洞器深松铲(d)带翼深松铲(e)鸭掌铲(f)双翼铲 深松铲柱最常用的是矩形断面形,结构非常简单,入土部分前面加工成尖棱形,以减少阻力。由于深松铲侧面阻力一般很小,故这种铲柱强度是足够的。有的铲柱采用薄壳结构,重量较轻,但结构较复杂。
深松铲的松土过程 (a)土壤破裂面(b)连续破裂过程 三、深松铲的工作性能 1.深松铲的松土原理及影响因素深松铲应该做到松土范围适当,牵引阻力小。这与深松铲的型式、参数及土壤状况有密切关系。下面以平面凿形铲为例,说明深松铲的松土原理及影响其性能的因素。
磨损是深松铲尖失效的主要原因,造成材料的巨大损失。利用等离子弧堆焊技术在深松铲尖制得铁基-碳化钨复合涂层材料,增大耐磨性以延长其使用寿命。研究不同比例WC粉末的铁基合金的硬度、显微组织、在田间的摩擦磨损性能及WC粉末比例对显微组织的影响规律。结果表明:堆焊层中无裂纹、气孔等缺陷;涂层组织包括树枝晶和枝晶间多元共晶组织;在相同的试验条件下,堆焊涂层的耐磨性明显高于普通深松铲尖,且深松铲尖的耐磨性随着碳化钨质量分数的增加而增强;当碳化钨含量在40%时,堆焊层的硬度和耐磨性能最强,初始碳化钨颗粒的沉淀和熔解并与铁基合金元素发生相互作用形成共晶组织、长条状沉淀物是增强耐磨性的原因。
深松铲的耕作阻力主要来自于铲柄破土刃口对坚硬土层的犁切作用,因此,降低铲柄破土刃口的切土阻力将会使深松铲耕作阻力显著下降。研究发现,小家鼠爪趾的纵剖面上表面轮廓线具有指数特征,其方程的具体形式为:Y=66.61e0.0117X+17.78e0.1835X。将爪趾轮廓拟合曲线应用于深松铲铲柄的破土刃口曲线结构设计之中,设计制备了指数函数曲线型仿生减阻深松铲。在室内土槽实验室与L型、倾斜型、抛物线型三种类型的深松铲进行了耕作阻力对比试验。耕作阻力对比分析结果表明,耕深和前进速度对深松铲的耕作阻力具有显著影响。