车牌识别技术(Vehicle License Plate Recognition,VLPR) 是指能够检测到受路面的车辆并自动提取车辆牌信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯独的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红
原理及应用
原理及应用灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。
汽车牌照号码是车辆的唯独'身份'标识,牌照自动识别技术可以在汽车不作任何改动的情况下实现汽车'身份'的自动登记及验证,这项技术已经应用于公路收费、停车管理、称重系统、交通诱导、交通执法、公路稽查、车辆调度、车辆检测等各种场合。
车辆识别
直接法一般有图像处理技术,传统模式识别技术及人工神经网络技术。
1)图像处理技术:运用图像处理技术解决汽车牌照识别的研究最早始于80年代,但国内外均只是就车牌识别中的某一个具体问题进行讨论,并且通常仅采用简单的图像处理技术来解决,并没有形成完整的系统体系,识别过程是使用工业电视摄像机拍下汽车的工前方图像,然后交给计算机进行简单的处理,并且最终仍需要人工干预,例如车辆牌中省份汉字的识别问题,1985年有人利用常见的图像处理技木方法提出汉字识别的分类是在抽取汉字特征的基础上进行的,根据汉字的投影直方图选取浮动闭值,抽取汉字在竖直方向的峰值,利用树形查表法进行汉字的粗分类;然后根据汉字在水平方向的投影直方图,选取适当闭值,进行量化处理后,形成一个变长链码,再用动态规划法,求出与标准模式链码的很小距离,实现细分米完成汉字省名的自动识别。
2)传统模式识别技术。传统模式识别技术指结构特征法,统计特征法等。90年代,由于计算机视觉技术的发展,开始出现汽车牌照识别的系统化研究。1990年AS.Johnson等运用计算机视觉技术和图像处理技术实现了车辆牌的自动识别系统。该系统分为图像分割、特征提取和模板构造、字符识别等三个部分。利用不同闽值对应的直方图不同,经过大量统计实验确定出车牌位置的图像直方图的闽值范围,从而根据特定闽值对应的直方图分割出车牌,再利用预先设置的标准字符模板进行模式匹配识别出字符。
3)人工神经网络技术。近几年来,计算机及相关技术发达的一些国家开始探讨用人工神经网络技术解决车牌自动识别问题,例如1994年M.M.M.FANHY等就成功地运用了BAM神经网络方法对车牌上的字符进行自动识别,BAM神经网络是由相同神经元构成的双向联想式单层网络,每一个字符模板对应着唯独个BAM矩阵,通过与车牌上的字符比较,识别出正确的车牌号码。
这种采用BAM神经网络方法的缺点是无映解决识别系统存储容量和处理速度相矛盾的问题。
车辆识别、号码识别
为了进行车牌识别,需要以下几个基本的步骤:
1) 牌照定位,定位图片中的牌照位置;
2) 牌照字符分割,把牌照中的字符分割出来;
3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
1) 牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个很好的区域作为牌照区域,并将其从图像中分离出来。
2) 牌照字符分割
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部很小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。