高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部所含气隙上的场强就会先达到使其击穿的程度,从而气隙先发生放电,这种绝缘内部气隙的放电就是一种局部放电。
局部放电发生时,常伴有光、声、热等现象的发生,对此,局部放电检测技术中也相应出现了光测法、声测法、红外热测法等非电量检测方法。较之电检测法,非电量检测方法具有抗电磁干扰能力强、与试样电容无关等优点。 1.超声波法测试局部放电 利用测超声波检测技术来测定局部放电的位置及放电程度,这种方法较简单,不受环境条件限制。但灵敏度较低,不能直接定量。在进行局部放电测量中当发现变压器有大于5000pc的故障放电,超声波声测量方法常用于放电部位确定及配合电测法的补充手段。但声测法有它独特的优点,即它可在试品外壳表面不带电的任意部位安置传感器,可较准确地测定放电位置,且接收的信号与系统电源没有电的联系,不会受到电源系统的电信号的干扰;因此进行局部放电测量时,以电测法和声测法同时运用。两种方法的优点互补,再配合一些信号处理分析手段,则可得到很好的测量效果。 局部放电测量通常选用密封结构的超声传感器,其结构原理见图3-6。它是直接把压电陶瓷安装在金属外壳之上,带动外壳一起振动,并在金属壳里填充树脂作为密封。
通常视在放电量(视在电荷)与试品实际点的放电量并不相等,实际局部放电量是无法直接测得,而视在电荷是可以测量的。试品放电引起的电流脉冲在测量阻抗端子上所产生的电压波形可能不同于注入脉冲引起的波形,但通常可以认为这二个量在测量仪器上读到的响应值相等。两者之间的关系可以通过用图1气隙放电的等效回路来导出,欢迎来电