模式识别方法
决策理论方法又称统计方法,是发展较早也比较成熟的一种方法。被识别对象首先数字化,变换为适于计算机处理的数字信息。一个模式常常要用很大的信息量来表示。许多模式识别系统在数字化环节之后还进行预处理,用于除去混入的干扰信息并减少某些变形和失真。随后是进行特征抽取,即从数字化后或预处理后的输入模式中抽取一组特征。所谓特征是选定的一种度量,它对于一般的变形和失真保持不变或几乎不变,并且只含尽可能少的冗余信息。特征抽取过程将输入模式从对象空间映射到特征空间。这时,模式可用特征空间中的一个点或一个特征矢量表示。这种映射不仅压缩了信息量,而且易于分类。在决策理论方法中,特征抽取占有重要的地位,但尚无通用的理论指导,只能通过分析具体识别对象决定选取何种特征。特征抽取后可进行分类,即从特征空间再映射到决策空间。为此而引入鉴别函数,由特征矢量计算出相应于各类别的鉴别函数值,通过鉴别函数值的比较实行分类。
模式识别问题分类
模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别简史
早期的模式识别研究着重在数学方法上。20世纪50年代末,F.罗森布拉特提出了一种简化的模拟人脑进行识别的数学模型--感知器,初步实现了通过给定类别的各个样本对识别系统进行训练,使系统在学习完毕后具有对其他未知类别的模式进行正确分类的能力。1957年,周绍康提出用统计决策理论方法求解模式识别问题,促进了从50年代末开始的模式识别研究工作的迅速发展。1962年,R.纳拉西曼提出了一种基于基元关系的句法识别方法。付京孙(K.S. Fu)在笮的理论及应用两方^行了系统的卓有成效的研究,并于1974年出版了一本专著《句法模式识别及其应用》。1982年和1984年,J.荷甫菲尔德发表了两篇重要论文,深刻揭示出人工神经元,网路所具有的联想存储和计算能力,进一步推动了模式识别的研究工作,短短几年在很多应用方面就取得了显著成果,从而形成了模式识别的人工神经元网络方法的新的学科方向。