当与高分子材料做相对滑动的刚性物体的表面相对平滑时,高分子材料仅发生微小的变形,看不到明显的损伤。但在较长的摩擦之后,在重复循环应力的作用下,高分子材料表面以下不远的区域成为主要的能量聚集与耗散处,使那里的高分子材料发生热老化、化学降解或其它降低材料强度的作用。由此产生可见的材料损伤,即在高分子材料表面逐渐形成与滑动方向相垂直的裂纹,并有磨屑从缝隙处脱落下来。
高分子材料受到交变载荷作用时,外力所作的功包括两部分:一部分是应力作用,将造成高分子材料内部结构的某种的变化,例如分子链的滑动、断裂、重排与定向等;另一部分则是高分子材料发生内摩擦所消耗的能量,这种内摩擦使得高分子材料内部高温局部升高,显著的促使前一部分所发生的过程加速进行。这些大分子激烈活动区域内的应力集中更为显著。在交变载荷持续作用下,高分子材料内部不断产生微裂缝并继续扩展,使这些区域的强度不断下降以致断裂。当高分子材料中有增强物或夹杂物时,这些物质与高分子材料交换的界面上,很容易产生疲劳裂纹。
聚合物被磨损和转移到金属材料上去,不仅是材料表面性质的反映,也是材料内聚能在材料表面的反映。分析PTFE的分子结构[CF2-CF2]、HDPE分子结构[CH2-CH2]和POM分子[CF2O]的主链不难发现:分子间作用力越强,内聚能越高(POM),耐磨性越好,摩擦因数越高;分子间作用力越弱,内聚能低(PTFE),耐磨性能差,摩擦因数低。