2影响黏度的因素
(1)温度 如式(15)所示,液体的黏度在温度不太高时,式中的指数项比乘数项的影响
,即温度升高,η值下降。在温度很高时,指数项趋近于1,乘数项将起主要作用,即温度
高,η值增大,但这已是接近气态的情况。图18为常用金属动力黏度与温度的关系。
(2)熔点 黏度反映原子间结合力的强弱,与熔点有共同性。因此,合金成分的改变也
定着黏度的大小,图19即为 MgSn系合金的相图与
度的关系。可见,难熔化合物的黏度较高,而熔点低
共晶成分合金其黏度低。
表面活性元素在金属表面富集,当接近熔点时尤为显著。因为在熔点附近的液体中有大
的原子集团,它们对体积大的原子的排挤也就越明显。但是温度升高时,原子排列的不规
性增加,溶质和溶剂容易均匀混合,而削弱了表面富集现象。因而,随着温度的升高,表
张力反而有所增大,到一定温度后,表面张力又降低。
原子体积很小的C、O、S等元素,在金属中容易间隙到晶格中,也使晶格歪曲,势能
加,也被排挤到金属表面,成为表面活性元素。由于这些元素的自由电子很少,表面张力
,也会使金属的表面张力降低。图112所示为镁合金中加入第二组元后表面张力的变化
因此,实际金属和合金的液体结构中存在着两种起伏:一种是能
量起伏,表现为各个原子间能量的不同和各个原子集团间尺寸的不同;另一种是浓度起伏,
表现为各个原子集团之间成分的不同。
如果AB原子间的结合力较强,则足以在液体中形成新的化学键,在热运动的作用下,
出现时而化合,时而分解的分子,也可称为临时的不稳定化合物,或者在低温时化合,在高
温时分解。例如,硫在铁液中高温时可以完全溶解,而在较低温度下则可能析出FeS。当
AB原子间或同类原子间结合非常强时,则可以形成比较强而稳定的结合,在液体中就出现
新的固相 (如氧在铝中形成Al2O3,氧与铁中的硅形成SiO2 等)或气相。