根据MAX4544产品参数,其最di工作电压为2.7V。由于输入电压为3.3V,而肖特基的正向管压降为0.3V,因此即使该升压变换处于关闭模式,MAX4544(及MAX810)也处于工作状态。此时,MAX810输出高电平,MAX4544的公共端COM与其常开端NO(Q1的源极)相连。当MAX668使能时,与MAX4544公共端相连的电阻网络为MAX668提供反馈电压。由于5V电压时MAX4544的导通电阻最da可达60Ω,因此为了得到最xiao输出电压误差,反馈电阻的取值应该很大。由于3V工作电压时,MAX4544的导通电阻仅为120Ω,因此开关MAX4544引入的误差电压很小,即使低输出电压也是如此。
那么抵抗过一次瞬间脉冲的保险丝有没有发生什么变化呢?那就要看它受脉冲的伤害有多大了,如果该脉冲能量远小于保险丝熔化热能,保险丝受到的冲击很小,那么保险丝就可以接受许许多多次冲击而不被冲断,反之如果脉冲能量接近保险丝熔化热能,保险丝被冲击一次受到的损伤很大,那么它就可能受不起第二次的冲击了,也就是说:保险丝在经受每一次脉冲的冲击后都会受到一定程度的损伤,即它的耐脉冲能力有所减弱或I2t 有所降低,减弱或降低的程度跟脉冲的能量成比。
同时,在电路处于故障条件下重新接通电路可能损坏设备,因而不安全。高分子PTC热敏电阻能够一直保持高电阻状态直到排除故障。
高分子PTC热敏电阻与陶瓷PTC热敏电阻的不同在于元件的初始阻值、动作时间(对事故事件的反应时间)以及尺寸大小的差别。具有相同维持电流的高分子PTC热敏电阻与陶瓷PTC热敏电阻相比,高分子PTC热敏电阻尺寸更小、阻值更低,同时反应更快。
3. 高分子PTC热敏电阻的工作原理是什么?
高分子PTC热敏电阻又叫自恢复保险丝是由填充炭黑颗粒的聚合物材料制成。这种材料具有一定导电能力,因而能够通过额定的电流。如果通过热敏电阻的电流过高,它的发热功率大于散热功率,此时热敏电阻的温度将开始不断升高,同时热敏电阻中的聚合物基体开始膨胀,这使炭黑颗粒分离,并导致电阻上升,从而非常有效地降低了电路中的电流。