在高温腐蚀环境中,耐磨复合钢板以其可设计性强、耐腐蚀及性价比高等优势在石油化工领域得到越来越广泛的应用。然而在冶金、制造加工以及使用过程中,耐磨复合钢板压力容器结构中不可避免带有各种缺陷,特别是耐磨复合板压力容器焊缝处,因焊接工艺和结构的特殊,以及复合钢板两种组合材料之间的热物理性能、化学成分和组织上存在较大的差别,焊后耐磨复合钢板的焊缝出现包括位错、夹杂物和空隙等缺陷,长时间在高温作用下这些缺陷易产生蠕变空洞,出现蠕变裂纹,最终导致容器的蠕变断裂,给生产带来极大的损失,因此,复合钢板压力容器焊缝的高温蠕变研究成为亟待解决的重要课题。
研究高铬耐磨钢板经不同变形量(45%~75%)半固态锻造后的热稳定性能,研究了变形对过程中析出晶粒尺寸和形态,分析变形量对合金热稳定性能的影响。
在等温热处理过程中,变形量改变高铬耐磨钢板中析出相的形态及晶粒尺寸,使合金具有不同的热稳定性能,随着温度的降低:合金的固相率增大,合金晶粒粗大,Ti2Cu相呈长条状分布于晶界,高的强度取决于析出相强化作用。随着保温时间的延长,晶粒明显长大,晶粒形态趋于圆整,从630℃开始凝固到585℃合金固相率升到67%,呈非线性变化,非平衡凝固时在晶内产生的共晶组织,以及在随后的合并长大过程中晶粒所包裹的液相。随变形量的增加,高铬耐磨钢板的强度呈先降低后升高的趋势,间接超声振动处理20 s即可获得明显的非枝晶初晶颗粒,初生α-Al颗粒在机械搅拌的作用下变得圆整。随着变形温度的升高,高铬耐磨板晶粒细化,颗粒粒度趋于减小,分布分布趋于均匀、一致,与温度之间同样呈非线性变化,可获得晶粒形状系数为0.6、平均晶粒直径为70μm。随着半固态锻造温度的升高,合金力学性能下降,Ti2Cu相呈颗粒状或短棒状弥散分布,产生细晶强化,在熔体内部有明显的声流效应、空化效应以及热效应。
Mn13钢种主要分Mn13铸件和Mn13轧制钢板两种产品类别。前者系传统产品,长期以来为我国所普遍使用,已形成ZGMn13-1/2~5等5个牌号的产品国标(GB/T5680-1998)。后者尚无国标,只有企标(太钢:Q/TX046-2009),目前仅太钢、宝钢等极少数国内厂家具备批量产供条件,应该说尚处于推广发展阶段。然而,随着Mn13轧制钢板强度高、性能均匀稳定、使用寿命较Mn13铸件长7倍之多等性价比优势的日渐凸显,近年来Mn13轧制钢板的需求数量不断扩大,正成为替换传统高锰钢铸件和高铬铸铁的新一代材料。