钨铜触头理化性能指标:
钨铜复合材料是由钨与铜所组成的既不互溶又不形成金属间化合物的两相单体均匀混合的组织,一般称为钨铜假合金(pseudo-alloy)。正是由于这些特点,使得钨铜复合材料成为既具有钨的耐高温、高强度、高密度等特性,又具有铜的高导电导热性、好的塑性等综合性能的材料。
钨、铜单质金属的物理性能:
而且,这种综合性能还可以通过改变其组成成分的比例而加以调整。因而钨铜合金被广泛应用。
研究结果和意义
日本核融合科学研究所的研究院Masayuki Tokitani及其研究团队研制出一种直接连接钨和铜合金的技术,虽然有点困难。他们将连接材料用作缓冲,从而减少了中间材料的使用。利用这一技术,他们成功制备出在反应堆条件(~15 MW/m2)下都具有优异热转移容量的小型偏滤器。
该偏滤器必须能够承受得住极强的热流冲击,甚至在焊接热处理阶段,因为在这一阶段,这个元器件会被加热至900℃,再冷却至室温。所以,装甲材料和热沉材料连接界面上就会产生热应力。这种热应力应被尽可能快地除去。这一次,为了同时满足种种需求,研究团队的成员使用BNi-6 (Ni-11%P)、氧化物弥散强化铜合金(ODS-Cu)和GlidCop? (Cu-0.3wt%Al2O3)作为填充材料,以达到最you焊接条件。
实践检验真理
更特别的是,Tokitani教授的研究团队将焊接材料的厚度定为38 ?m,热处理温度和时间分别是960℃和10min,在此期间进行焊接操作。接下来,他们在从960℃到100℃的冷却过程中采用了极缓慢的自然冷却,在100℃到室温这段冷却过程中,采用氮气冷却。焊接完成后,采取三点弯曲试验来测试连接的强度。令人吃惊的是,连接层具有优良的韧性,其屈服强度达200 MPa。既然钨和GlidCop?材料在焊接处理后的屈服强度都在300 MPa以上,那么变形区域必然在焊接区以内。当张力为0.2%时,这一区域也不太可能是产生大塑性变形的地方。既然实际的塑性变形区域都特别薄(比如几十微米),那么实际的张力应远大于0.2%。这真是一个令人惊讶的结果。