2.铸件的凝固方式
一般将铸件的凝固方式分为三种类型。逐层凝固方式、体积凝固方式 (或称糊状凝固方
式)和中间凝固方式。铸件的凝固方式取决于凝固区域的宽度。
72
T1 和T2 是铸件断面上两个不同时刻的温度场。
从图中可观察到,恒温下结晶的金属,在凝固过程中其铸件断面上的凝固区域宽度等于
零。断面上的固体和液体由一条界线 (凝固前沿)清楚地分开。随着温度的下降,固体层不
断加厚,逐步到达铸件中心。这种情况为 “逐层凝固方式”。
如果合金的结晶温度范围很小,或断面温度梯度很大时,铸件断面的凝固区域则很窄,
也属于逐层凝固方式 [图133(b)]。
②σSG<σLS时,cosθ为负值,即θ>90°。此情况下,液体倾向于形成球状,称之为液体能润湿固体。θ=180°为完全不润湿。
2影响界面张力的因素
(1)熔点 原子间结合力大的物质,其熔点高,表面张力也大。表13为几种金属的熔和表面张力。
(2)温度 对于多数金属和合金,
度升高,表面张力降低,即dσdt<0。这因为,温度升高时,液体质点间距增,表面质点的受力不对称性减弱,因表面张力降低。当达到液体的临界温时,由于气液两相界面消失,表面张等于零。但是,对于某些合金,如铸
、碳钢、铜及其合金等,其表面张力随温度的升高而增大,即dσdt>0。如图1所示。
在一些化学亲和力较强的元素的原子之间还可能形成不稳定的 (临时的)或稳定
的化合物。这些化合物可能以固态、气态或液态出现,有一部分在液态金属的保持过程中上
浮或下沉,而有相当一部分则悬浮于液态金属中,成为夹杂物 (多数为非金属夹杂物)。
总之,实际金属和合金的液体在微观上是由成分和结构不同的游动原子集团、空穴和许
多固态、气态或液态杂质或化合物组成,而且还表现出能量起伏、结构起伏及浓度起伏等三
种起伏特征。