高功率LED照明灯具的发展取决于两大元素:一是芯片本身;二是灯具技术,包含散热、光学、驱动。首先是芯片,目前,LED芯片技术发展的关键在于基底材料和外延生长技术。基底材料由传统的蓝宝石材料、硅和碳化硅,发展到氧化锌、氮化镓等新材料。无论是面向重点照明和整体照明的高功率芯片,还是用于装饰照明和一些简单的辅助照明的低功率芯片,技术升级的关键都关乎如何开发出更高效、更稳定的芯片。在短短数年内,借助于包括芯片结构、表面粗化处理和多量子阱结构设计在内的一系列技术改进,LED在光效方面实现了巨大突破。薄膜芯片技术是超亮LED芯片生产中的核心技术,能够减少各侧面的光输出损耗,并能借助底部的反射面使97%以上的光线从正面输出。这不仅显着提高LED的光效,还为透镜设计创造了优越的便利条件。
现代生物医学研究中为了更好地理解人体生命的作用过程和疾病的产生机理,需要观察细胞内细胞器、病毒、寄生虫等在三维细胞空间的定位和分布.另一方面,后基因组时代蛋白质科学的研究也要求阐明:蛋白质结构、定位与功能的关系以及蛋白质 - 蛋白质之间发生相互作用的时空顺序;生物大分子,主要是结构蛋白与 RNA 及其复合物,如何组成细胞的基本结构体系;重要的活性因子如何调节细胞的主要生命活动,如细胞增殖、细胞分化、细胞凋亡与细胞信号传递等.反映这些体系性质的特征尺度都在纳米量级,远远超出了常规的光学显微镜(激光扫描共聚焦显微镜等)的分辨极限(xy 向分辨率:200 nm,z 向分辨率:500 nm)。
应用传统的电子显微镜(EM)可以达到纳米量级的分辨率,能够观察到细胞内部囊泡、线粒体等细胞器的定位,但是由于缺乏特异性的探针标记,不适合定位单个蛋白质分子,也不适合观察活细胞和细胞膜的动态变化过程.因此,生物学家迫切希望有一种实验显微方法,它既具有亚微米甚至纳米尺度的光学分辨本领,又可以连续监测生物大分子和细胞器微小结构的演化,而并不影响生物体系的生物活性。 近年来,随着新型荧光分子探针的出现和成像方法的改进,光学成像的分辨率得到极大的改进,达到可以与电子显微镜相媲美的精度,并可以在活细胞上看到纳米尺度的蛋白质[2~5]. 这些技术上的进步势必极大地推动生命科学的发展,为了增强生物学家对于超分辨率荧光显微成像(super-resolutionfluorescent microscopy)机理的理解,以下我们将介绍传统的荧光显微成像的极限,突破此极限超分辨率成像的原理以及目前国际上的进展。