在地壳中,钛的储量仅次于铁、铝、镁,居第四位。由于钛具有熔点高、比重小、比强度高、韧性好、抗疲劳、耐腐蚀、导热系数低、高低温度耐受性能好、在急冷急热条件下应力小等特点,其商业价值在二十世纪五十年代开始被人们认识,被应用于航空、航天等高科技领域。随着不断向化工、石油、电力、海水淡化、建筑、日常生活用品等行业推广,钛金属日益被人们重视,被誉为“现代金属”和“战略金属”,是提高国防装备水平不可或缺的重要战略物资。衡量一个国家钛工业规模有两个重要指标:海绵钛产量和钛材产量,其中海绵钛产量反映原料生产能力,钛材产量反映的是深加工能力。钛工业已形成中国、美国、独联体、日本和欧洲五大生产和消费主体。
生物医用钛合金分类及性能
生物医用钛合金按材料显微组织类型可分为α型、α+β型和β型钛合金三类。目前临床广泛使用的材料仍以纯钛和Ti-6Al-4V合金为主,但β型钛合金由于更低的弹性模量和更好的生物相容性已成为该领域的研究热点,是最有应用前景的生物医用钛合金。
可以看出, 第二代生物医用钛合金弹性模量明显比一代低 ,合金设计时Nb含量有增加的趋势且都是β型钛合金, Ti-35Nb-7Zr-5Ta 和Ti-29Nb-13Ta-7.1Zr合金具有低的弹性模量55MPa, 与人体骨的弹性模量最接近。因此开发较低弹性模量的生物医用β型钛合金已成为该领域的研究热点。目前国内外研究最为广泛的生物医用超弹性β钛合金是Ti-Nb系超弹性β钛合。
钛的发展历程
1947年,人们才开始在工厂里冶炼钛。当年,产量只有2吨。1955年产量激增到2万吨。1972年,年产量达到了 20万吨。钛的屈服强度比钢铁要高,而它的重量几乎只有同体积的钢铁的一半,钛虽然稍稍比铝重一点,它的屈服强度却比铝大2倍。钛的比强度高于铝和钢,比模量与铝、钢十分接近。在宇宙火箭中,就大量用钛代替钢铁。据统计, 世界上每年用于宇宙航行的钛,已达一千吨以上。极细的钛粉,还是火箭的好燃料,所以钛被誉为宇宙金属,空间金属。钛在高温下极易和空气发生反应,但熔点高达1668℃。在常温下,钛不怕王水腐蚀,但不耐5%以上浓度的硫酸和7%盐酸腐蚀。钛不怕常温的海水,有人曾把一块钛沉到海底,五年以后取上来一看,上面粘了许多小动物与海底植物,却一点也没有生锈,依旧亮闪闪的。