高剪切分散机,纳米分散机
多功能分散机,高速分散机,超细分散机,高剪切分散机,小型分散机,实验室分散机,中试型分散机,德国分散机,进口分散机,管线式分散机,四级分散机,纳米分散机,在线分散机,连续式分散机



材质316L不锈钢 结构内轴加外轴 转子定子型号多种选择(1)主要溶解 破碎(2)破碎,减少粒径(3)功能类同于TM/2,但能达到容器内更好的混合效果; 转子带剪切刀的设计,可破碎物料中的大团块及纤维结构。(4)中低粘度物料的乳化分散(5)高粘度物料的混合分散 (6)中低粘度物料的乳化
浆料稳定性理论
大部分的浆料都是属于悬浮液体系。不稳定的悬浮液在静止状态下发生絮凝,并由于重力作用而很快分层,分散的目的就是要在产品的有效期内抗絮凝、防止分层,维持悬浮颗粒的均匀分布,提高产品的稳定性
悬浮液的絮凝理论
絮凝作用即是在静态(由于布朗运动)或动态(在剪切力作用下条件下,通过颗粒碰撞引起颗粒数目减少的过程。胶体系统中,如不考虑稳定剂,颗粒间的相互作用主要有范德华(Vander Waals)引力;伴随着带电颗粒的库仑(Coulombic)力(斥力或引力)。这些力的起因截然不同,Derjaguin 和 Landau 在苏联,Verwey 和 Overbeek 在荷兰分别独立的提出 DLVO 理论,构成了亲液分散体系中絮凝作用经典理论的基础,阐述了胶体悬浮体系的稳定性主要与胶体颗粒间上述两个独立的相互作用的相对距离有关。
悬浮液的分层理论
分层是分散相在外力(重力或离心力)作用下,在连续相中上浮或下沉的结果。在忽略布朗运动效应的静态条件下,可用Stokes 定律来描述,即分散相球形颗粒由于重力的沉降速度 V 由下式确定:
式中
ρs -ρ为分散相与连续相的密度差,g 为重力加速度,d 为分散相颗粒直径,μ为连续相的粘度。如果分散相颗粒的密度比连续相密度大,颗粒下沉,速度 V 为正值,反之,颗粒上浮,速度为负值。沉降速度大,浆料就容易分层。如果要保持体系稳定,就必须降低沉降速度,对于特定的浆料可以通过减小分散相固体颗粒直径 d。因为只有当粒径减至连续相液体分子大小时,颗粒才能稳定、均匀地分散在液体中不发生分离。
通过以上的分析我们可以看出,要提高悬浮液的稳定性,分散相颗粒的粒径应尽量细小。但应该指出,根据前人所做的大量研究发现,随着颗粒粒度的减小,虽然颗粒由重力引起的分离作用变为次要的因素,但是由于颗粒之间的间距减小,颗粒之间的结合力(范德华力等)起到了重要决定性作用。另外,当颗粒直径小于某一细小尺寸时,此时,颗粒的布朗运动效应就不能忽略了,所以由于细小颗粒的布朗运动,而使得颗粒之间产生激烈地碰撞。若不加稳定剂,这些情况都会导致颗粒团聚,对体系的稳定是不利的。所以浆料的分散中,颗粒粒径并非越细越好,要视浆料的特性而定。分散就是要根据物料的特性与特点,减小分散相颗粒的粒度,使其分布于一个较窄的尺寸范围,并达到吸力与斥力的相互平衡,从而保证浆料体系的稳定。
乳化效果,影响分散乳化结果的因素有以下几点;1 乳化头的形式(批次式和连续式)(连续式比批次好)2 乳化头的剪切速率 (越大,效果越好)3 乳化头的齿形结构(分为初齿,中齿,细齿,超细齿,约细齿效果越好)4 物料在分散墙体的停留时间,乳化分散时间(可以看作同等的电机,流量越小,效果越好)5 循环次数(越多,效果越好,到设备的期限,就不能再好)
高剪切分散机,纳米分散机
多功能分散机,高速分散机,超细分散机,高剪切分散机,小型分散机,实验室分散机,中试型分散机,德国分散机,进口分散机,管线式分散机,四级分散机,纳米分散机,在线分散机,连续式分散机