一、产品简介
1.1 概论
局部放电不会使电极完全短路的电气放电。 这种放电的幅值通常都很小。但是它们确实会导致绝缘层性能的不断下降,最终导致电气设备的故障。
非侵入式局部放电检测提供了既快速又简单的方法, 用于识别可能会引起停电或造成人员伤害的潜在绝缘故障。
局部放电会以下述的方式放射能量:
电磁能量:无线电波、光、热声能:声波、超声波
气体:臭氧、氮氧化物。
非侵入式检测最实用的技术都是基于检测电磁频谱中的高频部分以及超声波信号。本产品是专门开发的操作简单的用于检测电磁波及超声波活动的仪器。
2.2 空气传播的超声波放电活动
局部放电活动中的声波辐射会出现在整个声谱范围中。 听声音是可能的,但是要取决于各人的听觉能力。
使用仪器来检测声谱中的超声波具有几个优点。 仪器比人耳更敏感,与操作员无关,且工作在音频以上的频率,并且具有更强的方向性。
最敏感的检测方法是使用中心频率为40 ~200kHz 的超声波传感器。 该方法可以非常成功地检测局部放电活动。
2.3 空气传播的超声波放电活动
当局部放电活动出现在高压开关柜绝缘层中时, 它会产生高频电磁波, 它只可以通过金属外壳上的开孔从开关柜内泄漏到外表面。这些开孔可以是外壳缝隙或密封垫圈及其它绝缘部件周围的间隙。
当电磁波传播到开关柜外面时, 它会在接地的金属外壳上产生瞬态电压。瞬态地电压( TEV) 在几个毫伏至几伏的范围内,存在时间很短,具有几个纳秒的上升时间。
可采用非侵入方式将探头放在开关柜的外面来检测局部放电活动。
二、技术参数
1. 适用范围:采用非侵入式检测方式,对高压电气设备的局部放电缺陷进行检测及定位。
2. 传感器配置:
标配:超声波传感器(UA)、地电波传感器(TEV)
选配:变压器专用传感网、GIS专用特高频传感器、高压电缆专用传感器,也可根据用户要求定制。
3. 检测原理:超声波法(UA)、地电波法(TEV)及特高频法(UHF)。
4. 检测频带:
超声波:40~200KHz
地电波:3~100MHz
特高频:300~2000MHz。
5. 测量范围:
超声波:-90~80dB
地电波:-80~10dBm
特高频:-80~10dBm
5、灵敏度:最小10pC(具体取决于传感器与放电源之间的距离)。
6、传感器:
① 超声波传感器:20~200(kHz);
② 地电波(TEV):5 ~ 100MHz。
③ 特高频传感器:300~2000(MHz),具备定向接收特性;
7、具有内置超声传感器,地电波、超声波二合一传感器,可选变压器专用传感器、GIS专用传感器、电缆专用传感器等部件;
8、软件功能:
① 连续检测特高频、地电波及超声波信号,判断是否存在局部放电;
② 实时显示被测信号的变化趋势、可对局部放电信号的发展作出较为直观的判断;
③ 具备数据的现场存储功能。
9、仪器特征:
① 屏幕显示:高对比度 3.5 英寸TFT彩屏。
② 数据存储:可保存 1000 组测试数据。
③ 工作电源:内置 8.4V 锂电池,可连续工作 8 小时。
④ 电源:输入100-240VAC,输出8.4V/3A,充电时间3~4小时。
⑤ 外形尺寸:220 * 100 * 40。
⑥ 仪器重量:1.5kg。
⑦ 使用温度:-25℃~45℃。
⑧ 存储温度:-35℃~60℃。
三、产品成套性:
主机、传感器、交流适配器、连接电缆及运输箱。
传感器名称 | 外观 | 用途 |
超声波、TEV二合一传感器(标配) |
| 用于开关柜的超声波、地电波测试 |
变压器专用超声波传感器(选配) |
| 用于变压器内部的局放测试 |
特高频传感器 (选配) |
| 用来测量GIS的内部局部放电 |
高频互感器 (选配) |
| 用于高压电缆的局放测试 |
相关说明
读数(dBuV)与放电量(pC)之间的关系
传统的按照 IEC60270 标准进行的局部放电检测都是测量放电时高压导体产生的视在电荷量。因此,放电幅值一般用皮库(pC)来标示,在传统的局放检测仪的检测频率(一般为10~300kHz)上,各种高压设备(除长电缆外)都可以等效为集中电容。
高频传感器测量则是在 3~100MHz 的频率范围内进行的,在这些频率上,高压电力设备更近似接近传输线而不是集中电容,电压/时间曲线下的区域面积与放电过程中的电荷转移量成正比。
高频传感器测量瞬态过程中的电压,因此它不是直接测量电荷,另外,所测的是金属面板外表面的波峰,这只是面板内部信号的一部分而已,当脉冲沿着金属铠甲的表面传播时,它就会散开即在时域上展开,同时曲线下方的区域面积保持不变,这样脉冲幅值就会减小,因此,脉冲被检测到的地方离放电源越远其衰减越大。
显然,dBuV 和 pC 之间的关系取决于多种因素,其中大多数都是不可以量化的,无论是使用超声波传感器还是特高频传感器,都存在声强(dBuV)与放电量(pV)之间的关系,不同的被测对象及相互关系可以参照表1 ~ 表7。表1 dBuV - pC 参考指南:靠近25kV电缆终端处
读数(dBuV) | 局部放电传统测量(pC) |
0 | 32 |
5 | 56 |
10 | 100 |
15 | 178 |
20 | 316 |
25 | 560 |
30 | 1000 |
35 | 1780 |
40 | 3160 |
45 | 5600 |
50 | 10000 |
55 | 17800 |
60 | 31600 |
表2 给出的是混合物填充式 11kV 配电电缆终端箱中的相对地放电所获得的一些经验结果。
表2 混合物填充式 11kV 配电电缆终端箱的 dBuV - pC 参考指南
读数(dBuV) | 局部放电传统测量(pC) |
0 | 100 |
5 | 178 |
10 | 316 |
15 | 562 |
20 | 1000 |
25 | 1780 |
30 | 3160 |
35 | 5620 |
40 | 10000 |
45 | 17800 |
50 | 31600 |
55 | 56200 |
60 | 100000 |
表3 给出的是在油断路器的SRBP套管中的相对地放电所获得的一些经验结果。
表3 油断路器的SRBP套管的 dBuV - pC 参考指南
读数(dBuV) | 局部放电传统测量(pC) |
0 | 134 |
5 | 239 |
10 | 423 |
15 | 753 |
20 | 1340 |
25 | 2390 |
30 | 4230 |
35 | 7530 |
40 | 13400 |
45 | 23900 |
50 | 42300 |
55 | 75300 |
60 | 134000 |
表4 给出了11kV树脂浇注型电流互感器内部放电所获得的一些结果。
表4 11kV 树脂浇注型电流互感器 dBuV - pC 参考指南
读数(dBuV) | 局部放电传统测量(pC) |
0 | 224 |
5 | 399 |
10 | 708 |
15 | 1260 |
20 | 2240 |
25 | 3990 |
30 | 7080 |
35 | 12600 |
40 | 22400 |
45 | 39990 |
50 | 70800 |
55 | 126000 |
表5 给出了11kV 树脂浇注型电压互感器内部放电所获得的一些结果。
表5 11kV 电压互感器 dBuV - pC 参考指南
读数(dBuV) | 局部放电传统测量(pC) |
0 | 224 |
5 | 399 |
10 | 708 |
15 | 1260 |
20 | 2240 |
25 | 3990 |
30 | 7080 |
35 | 12600 |
40 | 22400 |
45 | 39990 |
50 | 70800 |
55 | 126000 |
60 | 161050 |
表6 给出了35kV/12500kVA 变压器内部放电所获得的一些结果。
表6 35kV/12500kVA 变压器 dBuV - pC 参考指南
读数(dBuV) | 局部放电传统测量(pC) |
0 | 67 |
5 | 119 |
10 | 211 |
15 | 376 |
20 | 670 |
25 | 1195 |
30 | 2115 |
35 | 3765 |
40 | 6700 |
45 | 11950 |
50 | 21150 |
55 | 37650 |
表7 给出了10kV开关柜内部放电所获得的一些结果。
表7 10kV开关柜 dBuV - pC 参考指南
读数(dBuV) | 局部放电传统测量(pC) |
0 | 22 |
5 | 40 |
10 | 70 |
15 | 125 |
20 | 223 |
25 | 398 |
30 | 705 |
35 | 1255 |
40 | 2233 |
45 | 3983 |
50 | 7050 |
55 | 12550 |
60 | 22333 |
应该强调一点,上述各表只能作为一个大致的参考指南,尽管一般来说增加 pC 水平就等于增加 dB 电平,但是放电源和衰减路径等因素都会严重影响校准结果,因此,所要做的就是通过历史数据的比较来判断被测物的绝缘程度。