15866185928宋先生
的电能可以被处于电动状态的其他电机所利用。但是这种方案仅适用于多电机传动系统,而且要求处于发电状态的电机容量要远小于工作在电动状态的电动机容量,应用有一定的局限性。
由以上分析可见,不管采用上述何种方法处理电在电机传动领域中,当电机快速制动或被其他力量拖动而工作在再生发电状态时,为避免变频器出现过流或过压故障跳闸,需要采取一些措施来处理电机的再生发电能量。
1)采用制动单元和制动电阻,制动单元的工作原理是通过检测变频器的直流母线电压来实现对再生能量的处理。当直流母线电压超过某一设定数值(如680 V)时,打开制动单元的开关将大功率制动电阻连接到直流母线上,释放储存在变频器内滤波电容上的电能,此时电阻将电能转变成热能消耗掉,制动能量被白白浪费,效率很低。采用这种方式时,投资较少,性能上的缺点是制动响应时间慢,制动转矩不足。
2)在变频器的直流母线上并联超级大电容,这种方式的原理如图1所示。其原理是将电机制动时的再生能量储存在足够大的超级电容器中,当电机工作在电动机状况时,又将储存在超级大电容中的电能利用,因此,这样的方式效率最高,基本没有损耗,转换效率可达99%以上(不考虑电机的发电效率)。但是这种策略存在的致命缺点是电容的容量一般在法拉级,受制造工艺和材料的限制,超级大电容体积非常庞大,价格昂贵。
3)采用共用直流母线的策略,这种方式的原理如图2所示,但仅适合于多电机传动系统。当系统中某台电机处在再生发电状态时,它所发出机的再生发电能量,都会或多或少地存在一些问题,不是耗能就是价格昂贵或者应用范围受限。针对以上问题,很多学者都在研究能量回馈问题。

