吸附法净化气态污染物是指利用固体吸附剂对气体混合物中各组分吸附选择性的不同而分离气体混合物的方法。吸附过程是一个浓缩过程,气态污染物通过吸附作用被浓缩到吸附剂表面上后再进行后续处理。吸附法主要适用于低浓度气态污染物的净化,对于高浓度的有机气体,通常需要首先经过冷凝等工艺将浓度降低后再进行吸附净化[3]。吸附技术是最为经典和常用的气体净化技术,也是目前工业VOCs 治理的主流技术之一。吸附法的关键技术是吸附剂、吸附设备和工艺、再生介质、后处理工艺等[4]。
活性炭(Activated Carbon)因其具有大比表面积和微孔结构而广泛应用于吸附回收有机气体。目前,对活性炭吸附有机气体的研究主要集中在吸附平衡的预测、活性炭材料的改性及有机物的物化性质对活性炭吸附性能的影响[5]。
通常将吸附与冷凝法连用。吸附后经脱附,冷凝回收挥发性有机物。
3.1.2
活性炭吸附工艺原理及流程
活性炭净化空气属于吸附领域,吸附是由于吸附剂和吸附质分子间的作用力引起的。吸附主要靠分子间的范德华力,把吸附质吸附在吸附剂表面,是可逆过程,只能暂时阻挡污染而不能消除分解污染物。活性炭外观为粉末或颗粒状,活性炭中微孔对活性炭吸附量起着支配作用,中孔和大孔一般为吸附质分子进入通道,在通道内的扩散讨程的快慢也会影响吸附量的大小[6]。活性炭纤维( Act ivated
Carbon Fibers,简称ACFs) 吸附有机废气是当今世界上最为先进的技术之一,活性炭纤维比颗粒状活性炭具有更大的吸附容量和更快的吸附动力学性能[7],活性炭吸、脱附工艺流程见图1[8]。
活性炭吸附工艺影响因素
活性炭净化空气的物理吸附,如图2所示四种情况:1)分子直径大于孔的直径,由于空间位阻,分子不能入孔,因此不吸附;2)分子直径等于孔的直径,吸附剂的捕捉力很强,非常适合低浓度吸附;3)分子直径小于孔的直径,孔内发生毛细管冷凝,吸附容量大;4)分子直径远小于孔的直径,吸附分子很容易解吸,解吸速率高,低浓度下的吸附量较小。
3.1.4
活性炭吸附工艺的优缺点
优点:1)适用于低浓度的各种污染物;2)活性炭价格不高,能源消耗低,应用起来比较经济;4)通过脱附冷凝可回收溶剂有机物;5)应用方便,只与同空气相接触就可以发挥作用;6)活性炭具有良好的耐酸碱和耐热性,化学稳定性较高。
缺点:1)吸附量小,物理吸附存在吸附饱和问题,随着吸附剂的消耗,吸附能力也变弱,使用一段时间后可能会出现吸附量小或失去吸附功能;2)吸附时,存在吸附的专一性问题,对混合气体,可能吸附性会减弱,同时也存在分子直径与活性炭孔径不匹配,造成脱附现象;3)活性炭吸附只是将有毒害气体转移,并没有达到分解有害气体的功效,可能会带来二次污染。不适高浓度废气,不适含水或含粒状物的废气。
方便先进:净化单元采用分体抽屉式结构,易于安装,维护,清洗特别方便,电源控制系统可自动调节电场强度,使净化设备在长期运行后仍保持较高的净化率。