可以看到,液态铝中的原子的排列在几个原子间距的小范围内,与其固态铝原子的排列
图15 700℃时液态Al中原子分布曲线
[当r→∞时,ρ(r)→ρ0,表示
较大体积中的原子平均密度
(相当于非晶态材料)]
方式基本一致,呈现出一定的有规则排列;而距离远的原子
排列就不同于固态了,表现为无序状态。这也是液态金属结
构的主要特征,称之为 “近程有序”、“远程无序”结构。
(3)液态金属结构的理论模型 对液态金属结构的理
论描述至今还没有一个公认的、系统的、科学的模型。以
下就几类典型模型做简要介绍。
3厚壁金属型中的凝固
当金属型的涂料层很薄时,厚壁金属型中凝固金属和铸型的热阻都不可忽略,因而
都存在明显的温度梯度。由于此时金属铸型界面的热阻相对很小,可忽略不计,则铸
型内表面和铸件表面温度相同。可以认为,厚壁金属型中的凝固传热为两个相连接的
半无限大物体的传热,整个系统的传热过程取决于铸件和铸型的热物理性质,其温度
分布如图127所示。
4水冷金属型中的凝固
在水冷金属型中,是通过控制冷却水温度和流量使铸型温度保持近似恒定 (t2F=t20),
在不考虑金属铸型界面热阻的情况下,凝固金属表面温度等于铸型温度 (t1F=t20)。在这
种情况下,凝固传热的主要热阻是凝固金属的热阻,铸件中有较大的温度梯度。系统的温度
分布如图128所示。
在这种情况下,铸件和铸型的温度分布如图125所示。因此可以认为,在整个传热过
程中,铸件断面的温度分布是均匀的,铸型内表面温度接近铸件的温度。如果铸型足够厚,
由于铸型的导热性很差,铸型的外表面温度仍然保持为t20。所以,绝热铸型本身的热物理
性质是决定整个系统传热过程的主要因素。
2金属铸型界面热阻为主的金属型中凝固
较薄的铸件在工作表面涂有涂料的金属型中铸造时,就属于这种情况。金属铸型界面
处的热阻较铸件和铸型中的热阻大得多,这时,凝固金属和铸型中的温度梯度可忽略不计,
即认为温度分布是均匀的,传热过程取决于涂料层的热物理性质。若金属无过热浇注,则界
面处铸件的温度等于凝固温度 (tF=tC),铸型的温度保持为t20,如图126所示。