这就意味着当温度升高,能量从W0→W1→W2→W3→W4 时,其间距 (振幅中心位置)将由
R0→R1→R2→R3→R4。也就是说,原子间距离将随温度的升高而增加,即产生热膨胀。另
一方面,空穴的产生也是物体膨胀的原因之一。由于能量起伏,一些原子则可能越过势垒跑
到原子之间的间隙中或金属表面,而失去大量能量,在新的位置上作微小振动 (图13)。
有机会获得能量,又可以跑到新的位置上。如此下去,它可以在整个晶体中 “游动”,这个
过程称为内蒸发。原子离开点阵后,留下了自由点阵———空穴。
距离再缩短时,吸引力又逐渐减小,
到R=R0时,相互作用力等于零 (F=0),此时达到平衡,
R0 为平衡距离。当距离小于平衡距离R0 时,出现排斥力
(P>0),并随距离的继续缩短而迅速增大。作用力F是由
引力和斥力构成的合力。吸引力是异性电荷间的库仑引
力;排斥力是同性电荷之间的斥力和。两个原子的相互作
用势能W (R)的曲线如图11(b)所示,可见在R=R0
时,对应于能量的极小值,状态稳定。这说明,原子之间
倾向于保持一定的间距,这就是在一定条件下,金属中的
原子具有一定排列的原因。
而是在铸件最后凝固的部位留下集中的缩孔,如图136所示。由于集中缩孔容易消除 (如设置冒口),一般认为这类合金
的补缩性良好。在板状和棒状铸件上会出现中心线缩孔。这类合金铸件在凝固过程中,当收
缩受阻而产生晶间裂纹时,也容易得到金属液的充填,使裂纹愈合,所以铸件的热裂倾向
性小。
宽结晶温度范固的合金 (如高碳钢、球墨铸铁、铝铜合金、铝镁合金、镁合金等)铸件
图137 体积凝固方式的缩松的凝固区域宽,液态金属的过冷很小,容易发展成为树枝发达
的粗大等轴晶组织。当粗大的等轴晶相互连接以后 (固相约占
70%),便将尚未凝固的液态金属分割为一个个互不沟通的溶池,最后在铸件中形成分散性的缩孔即缩松。