学校污水由排水系统收集后,进入污水处理站的化粪池,厌氧分解其中的粪便及大分子有机物,然后进入调节池,进行均质均量,调节池中设置液位控制器,再经液位控制仪传递信号,由提升泵送至一体化设备的厌氧池,经好氧处理流入消毒池进行消毒处理,消毒出水直接排入市政管网。
由格栅截留下的杂物定期装入小车倾倒至垃圾场,一体化沉淀池中的污泥部分排入化粪池进行污泥消化后定期抽吸外排,污泥池上清液回流至调节池再处理。
工艺原理:
A/O工艺是从生物膜法派生出来的一种废水生物处理法,即在生物接触氧化池内装填一定数量的填料,利用栖附在填料上的生物膜和充分供应的氧气,通过生物氧化作用,将废水中的有机物氧化分解,达到净化目的。
工艺将前段缺氧段和后段好氧段串联在一起,在缺氧段异养菌将污水中可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+)。在好氧段存在好氧微生物及自氧型细菌(硝化菌),其中好氧微生物将有机物分解成CO2和H2O;在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至缺氧段,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化。
5、A/O工艺特点
(1)工艺流程简单,构筑物少,运行灵活,管理方便。
(2)基建投资省,运行费用低。
(3)处理效果稳定,出水水质好,可实现脱碳、脱氮除磷。
(4)污泥量少,污泥性质稳定,污泥处理费用低。
(5)能承受水量、水质冲击负荷。
(6)污水处理系统自动化较高、管理方便。
6、小结
学校污水处理系统伴随当下水污染程度日益加剧是必然产物。目前一体化污水处理设备因具备投资费用低、操作简单出水水质稳定等特点,在目前多处学校污水治理过程中得到较好的应用。(1)对污染物的去除率高,抗污泥膨胀能力强,出水水质稳定**,出水中没有悬浮物;
(2)膜生物反应器实现了反应器污泥龄STR和水力停留时间HRT的分别控制,因而其设计和操作大大简化;
(3)膜的截留作用避免了微生物的流失,生物反应器内可保持高的污泥浓度,从而能提高体积负荷,降低污泥负荷,具有极强的抗冲击能力;
(4)由于很长,生物反应器又起到了“污泥硝化池”的作用,从而**减少污泥产量,剩余污泥产量低,污泥处理费用低;
(5)由于膜的截流作用使延长,营造了有利于增殖缓慢的微生物。如硝化细菌生长的环境,可以提高系统的硝化能力,同时有利于提高难降解大分子有机物的处理效率和促使其**的分解;
(6)MBR曝气池的活性污泥不会随出水流失,在运行过程中,活性污泥会因进入有机物浓度的变化而变化,并达到一种动态平衡,这使系统出水稳定并有耐冲击负荷的特点;
(7)较大的水力循环导致了污水的均匀混合,因而使活性污泥有很好的分散性,大大提高活性污泥的比表面积。MBR系统中活性污泥的高度分散是提高水处理的**的又一个原因。这是普通生化法水处理技术形成较大的菌 胶团所难以相比的;
(8) 膜生物反应器易于一体化,易于实现自动控制,操作管理方便;
(9)MBR工艺省略了二沉池,减少占地面积。