隧道台车的安装程序
安装行走轮架总成:利用起吊装置(手拉葫芦或吊车)将主动轮架和从动轮架,分别放在已铺好的轨道上,并做临时支撑,按着底纵梁中心线,调整前后轮架的距离,并用对角线相等的原理,调整轮架的正确方位,并垫平固定。
安装底纵梁:将底纵梁吊至已摆好的轮架之上,并用螺栓,加设临时支撑,校核对角线有无变化,如果在正确值内,可安装门形架。
安装门形架:一般是在现场先在地面组装门形架单片总成。然后一片一片的吊装于底纵梁相对位置,用螺栓临时固定。
衬砌台车的工作原理: 衬砌台车是按定作人提供的衬砌断面图和技术交底书要求来设计的。钢模板衬砌台车外轮廓与隧道衬砌理论内轮廓面一致 ,通过封堵模板两端的开挖仓面,与已开挖面形成封闭的环形仓,然后浇注混凝土而实现隧道的衬砌施工。台车动力为电 机驱动,轨行式行走系统;模板动作方式为液压缸活塞运动方式,完成立收模及模板中心偏差的调整等动作;台车立模后 ,需要通过丝杠把模板与架体连成整体,以承受混凝土浇注过程中荷载。
在国外,日本研究人员提出了由冲击器、钎杆和钎头等组成的计算机模型,以活塞、钎杆和钎头的一元应力波理论为基础,并假定了钎头与岩石间的相互作用力和凿透能力与滞后的关系,开发出连续凿岩时的计算机解析模型,更加符合凿岩机的实际工作情况。日本研究人员侧重的是针对具体的液压凿岩机建立计算机模拟模型,研究液压冲击器结构参数、冲击参数和性能的优化,并在计算机模拟中引入由试验实测得到的被冲击体的反冲系数,模拟得到相应液压冲击机构的最优回油口面积、蓄能器的最优充气腔容积和后腔受压面积等。在进行计算机模拟的同时,日本研究人员更注重与试验测试结果的比较,并依照测试的数据进行计算模型的修正,
为提高冲击机构的冲击效率、进行液压冲击参数的调整和优化凿岩机的结构提供了依据,大大提高了试制样机的精度,缩短了设计周期,减少了不必要的开发成本。