二、黏滞性及其对成型过程的影响
1黏滞性的本质
液态金属的黏滞性 (也称黏度)对其充型过程、液态金属中的气体及非金属夹杂物的排
除、一次结晶的形态、偏析的形成等,都有直接或间接的作用。
如图17所示,当外力F(x)作用于液体表面时,由于质点间作用力引起的内摩擦力,
使得最表面的一层移动速度大于第二层,而第二层的移动速度大于第三层。
由式(15)可知,黏度与δ
3 成反比,与正比。能反映了原子间结合力
的强弱,而原子间距离也与结合力有关。因此,黏滞性的本质是质点间 (原子间)结合力的大小。
二、影响充型能力的因素及提高充型能力的措施
影响充型能力的因素是通过两个途径发生作用的:影响金属与铸型之间热交换条件,而
改变金属液的流动时间;影响金属液在铸型中的水力学条件,而改变金属液的流速。影响液
态金属充型能力的因素是很多的,为便于分析,将所有的因素归纳为如下四类:
1金属性质方面的因素
这类因素是内因,决定了金属本身的流动能力———流动性。
(1)合金的化学成分 合金的化学成分决定了结晶温度范围,因此合金的流动性与其成
分之间存在着一定的规律性。在流动性曲线上,对应着纯金属、共晶成分和金属间化合物的
地方出现大值,而随结晶温度范围的增加,流动性下降,且在大结晶温度范围附近出现
小值 (如图118、图119所示)。
因为空穴数目的增加不可能是突变的。因此,对于这种突变,应当理解为金属已熔化,已由固态变为
液态,发生状态改变造成的。从图11可以看出,假设在熔点附近原子间距达到了R1,原
子具有很高的能量,很容易超过势垒而离位。但是在相邻原子最引力作用下,仍然要向平
衡位置运动。虽然此时离位原子和空穴大为增加,金属仍表现为固体性质。若此时从外界供
给足够的能量———熔化潜热,使原子间距离超过R1,原子间的引力急剧减小,从而造成原
子结合键突然破坏,金属则从固态进入熔化状态。