国内真正系统地提出超精密加工技术的概念是从20世纪80年代~90年代初,由于航空、航天等军1工行业的发展对零部件的加工精度和表面质量都提出了更高的要求,这些军1工行业投入了资金支持行业内的研究所和高校开始进行超精密加工技术基础研究。由于当时超精密加工技术属于军1用技术,无论从设备还是工艺等方面,国外都实施了技术封锁,所以国内超精密加工技术的开展基本都是从超精密加工设备的研究开始。由于组成超精密加工设备的基础是超精密元部件,包括空气静压主轴及导轨、液体静压主轴及导轨等,所以各家单位也正是以超精密基础元部件及超精密切削加工用的天然金刚石刀具等为突破口,并很快就取得了一些进展。哈尔滨工业大学、北京航空精密机械研究所等单位陆续研制了超精密主轴及导轨等元部件,并进行了天然金刚石超精密切削刀具刃磨机理及工艺研究,同时陆续搭建了一些结构功能简单的超精密车床、超精密镗床等超精密加工设备,开始进行超精密切削工艺实验。
超精密磨削
用精1确修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。尺寸精度0.1—0.3μm,表面粗糙度Ra0.2一0.05μm,效率高,应用范围广泛,从软金属到淬火钢、不锈钢、高速钢等难切削材料,及半导体、玻璃、陶瓷等硬脆非金属材料,几乎所有的材料都可以利用磨削进行加工。但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相组织要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷,需要合理管控。
钛合金材料在精密加工中的绝窍
众所周知,航空航天行业当中的精密加工对于材料的要求是很高的,当然一方是为了要满足航空设备的特殊性,还有更重要的是因为航天的环景影响。因为特殊的环境影响,所以市面上的一般材料当然满足不了该环境的需求,势必需要一些特殊的材料进行替代。今天向大家介绍一种比较常用的材料,那就是钛合金,特别是航空航天方面,更是常见,为何这种材料运用比较多呢?那与它的特性有一定的关系。
钛合金,它的比重小,决定的了质量小,强度和热强度高,决定了硬度与耐高温,且耐海水和酸碱腐蚀等一系列优良的物理机械性能,决定其不论在何种环境都可使用,另外还有一点,变形系数很小,因此在航天、航空、船舶、石油、化工等工业中得到了广泛的应用。