京都CNC数控机床的维修技术 数控机床主轴驱动系统维修改造。控制数控车床中,主轴驱动系统里的主轴旋转运动能够为车床主轴提供所需要的驱动功率,并且所需的切削力,工件和刀具的相互作用产生负载转矩。在数控车床中主轴输出功率要求大,调速范围足够大,并具有主轴和进给驱动同步控制、准停控制、角度分度控制等控制功能,需要做到高xiao、高精度和高柔性为一体。
运算速度方面,目前开发出CPU应该是32位和64位的数控系统,频率达到几百兆赫、上千兆赫。微处理器的数控系统才能为高速、高精度提供保障。才能达到在分辨率为0.1μm---0.01μm范围时,可以获得高达24~240m/min的进给速度。在换刀速度方面,主轴为轴心,刀具设计在圆周布置,交换时间控制在0.5s为最gao,目前德国Chiron公司将刀库设计成篮子样式刀到刀的换刀时间仅仅是0.9s。
数控机床高精度方面,可以利用误差补偿技术,采取误差补偿技术,能够把加工误差减少60~80,方法是采取反向间隙补偿法,丝杆螺距误差补偿法,以及刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。还可以利用CNC系统控制精度,方法是以微小程序段实现连续进给,采取高速插补技术,采取CNC控制单位精细化措施提高位置检测精度。亦或者是通过仿zhen预测机床的加工精度,用网格解码器检查以保证机床的定位精度和重复定位精度,在不同运行条件下保证零件的加工质量。
CNC电脑雕刻及数控铣与加工中心的对比
2.1机械部分
机床机械由两个部分构成:工作台,主轴滑板等为移动部分;床身、底座,立柱等为非移动部分。
(1)数控铣、CNC加工中心
对数控铣与CNC加工中心的非移动部分和移动部分刚性要求高,因此能进行重切削。但由于移动部分同样庞大,牺牲了机床灵活性,对于细小的切削和快速进给就显得力不从心。
(2)CNC雕铣机
雕铣机的非移动部分刚性要求也要尽可能地好,而移动部分的刚性则要以灵活为前题,要设计得尽可能地轻巧一些,同时保持一定的刚性。如此设计的CNC雕刻机就可以进行比较细小的精加工,加工精度较高,对于软金属可以进行高速加工,但由于移动部分的刚性较差,所以不可能进行重切削。如何从机械结构上解决移动部分重量轻、刚性又好的矛盾,其关键在于机械结构设计,可采用以下的技术措施
1)采用超宽的立柱和横梁,因为龙门式的结构有极好的对称性和极JIA的刚性,它是高速切削设备的SHOU选结构。与传统的C型床身结构相比,龙门架形式的床身刚性较高,受力平均,工件只在一个轴向移动,各运动轴及相对惯性低,设计紧凑精密,可确保高刚性,高精度及高动态特性。机床的横梁可采用倾斜30度结构,使主轴鞍座的的重心向后方移动,并且使横梁的导轨间距尽量加大,如此可大大提高主轴的稳定性和刚性。由于立柱的质量远远大于主轴等移动部件的质量,所以为机床的高速运动和主轴的高速运转及负荷切削提供了坚实的保障。
智能化数控系统的自诊断功能。人工智能技术为制造业生产柔性化、制造自动化的发展提供了很大帮助,如监测加工过程中,关于切削力、主轴与进给电机的功率、电流、电压等方面的信息,可以采取用传统的或者是现代的算法进行识别来辩识出刀具的受力、磨损、破损状态,和机床加工的稳定性状态情况。
如要完整记录系统的各种信息,并且对数控机床发生的错误与事故情况进行回放与仿zhen,可以用智能故障回放和故障仿技术,来确定错误引起的原因,和提供解决问题的办法。以及为了要自动识别负载情况,和关于自动调整参数的智能化伺服系统,以及智能主轴交流驱动装置,智能化进给伺服装置,就可以设计智能化交流伺服驱动装置。
在自诊断方面,CNC系统实现较为完备的自诊断系统,CNC系统有控制和显示,以及编程能力。能够输出脉冲型控制信号与I/O信号。而且在CRT上,还可以直观地看出CNC系统I/O的状态。出现问题后,可以通过PLC程序的逻辑分析检查出问题的部位。